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Abstract We apply an exemplar model of memory to explain
performance in the artificial grammar task. The model blends
the convolution-based method for representation developed in
Jones and Mewhort’s BEAGLE model of semantic memory
(Psychological Review 114:1-37, 2007) with the storage and
retrieval assumptions in Hintzman’s MINERVA 2 model of
episodic memory (Behavior Research Methods, Instruments,
and Computers, 16:96—101, 1984). The model captures differ-
ences in encoding to fit data from two experiments that
document the influence of encoding on implicit learning. We
provide code so that researchers can adapt the model and
techniques to their own experiments.

Keywords Artificial grammar learning - Mental
organization - Exemplar model - Holographic reduced
representation

In an artificial grammar task, participants study letter strings
constructed according to the rules of an artificial grammar.
Afterward, they attempt to discriminate novel grammatical
from novel ungrammatical test strings. Typically, people can
discriminate the two classes of test items, but they cannot
articulate the grammar (Reber, 1967).

Three kinds of theories have been proposed to explain
peoples’ performance in the artificial grammar task.
Abstractionist theories propose that participants internalize
the grammar and, at test, endorse strings that match it. When
participants cannot articulate the grammar, grammatical
knowledge is designated implicit (e.g., Mathews et al., 1989;
Reber, 1967). Statistical theories propose that participants
learn regularities in the training list (e.g., letter frequencies)
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and, at test, endorse those strings that exhibit the learned
regularities. The statistical theories split on whether partici-
pants’ knowledge of statistical regularities is implicit (e.g.,
Dulany, Carlson, & Dewey, 1984; Knowlton & Squire, 1996;
Perruchet & Pacteau, 1990; Servan-Schreiber & Anderson,
1990). Exemplar theories propose that participants store train-
ing exemplars in memory and, at test, endorse strings that
remind them of the studied exemplars. Because no implicit
knowledge of the grammar is assumed, the discrepancy be-
tween participants’ performance and awareness is irrelevant
(e.g., Brooks, 1978; Higham, 1997; Jamieson, Holmes, &
Mewhort, 2010; Jamieson & Mewhort, 2009, 2010;
Nosofsky & Zaki, 1998; Pothos & Bailey, 2000; Vokey &
Brooks, 1992; Wright & Whittlesea, 1998).

Jamieson and Mewhort (2009, 2010) formalized the ex-
emplar account by extending Hintzman’s (1984, 1986)
MINERVA 2 model of human memory. According to the
account, participants store each exemplar as a separate trace
in memory. When a test probe is presented, each trace is
activated in proportion to its similarity to the probe.
Judgment of grammaticality is based on the similarity of the
probe to a weighted sum of the activated traces. In short, a
probe that retrieves a good representation of itself from mem-
ory is judged grammatical; a probe that does not retrieve a
good representation of itself from memory is judged ungram-
matical. The account has roots in Brooks’s (1978; Vokey &
Brooks, 1992) instance-based analysis of implicit learning.

Following Brooks (1978), Jamieson and Mewhort’s
(2009, 2010) model encoded exemplars as whole strings.
Specifically, each letter was represented by a unique vector
of random elements, and each letter string was represented
by concatenating letter vectors in corresponding order to the
stimulus. For example, a string ABCD was represented by
first generating a vector for each letter—a, b, ¢, and d—and
then, concatenating the letter vectors a//b//c//d, where //
indicates concatenation.
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Although the concatenation-based model simulated per-
formance in several artificial grammar experiments, Kinder
(2010) soon pointed out that whole-string encoding was
generally at odds with the chunk-based encoding that people
tend to engage in when studying training strings in the
artificial grammar task (Perruchet & Pacteau, 1990). For
example, people more often encode a string RGBRGBPY
as “RGB, RGB, PY” than as “RGBRGBPY”’ (Jamieson &
Mewhort, 2005).

To resolve the issue, Jamieson and Mewhort (2011)
reengineered the representation assumptions in their mod-
el on the basis of a scheme for holographic representa-
tion developed in Jones and Mewhort’s (2007; Plate,
1995) BEAGLE model of semantic memory. In the new
model, letters were represented as vectors of random
elements, letter subsequences (i.e., bigrams, trigrams)
were constructed by applying noncommutative circular
convolution to the letter vectors, and letter strings were
represented by summing encoded subsequences into a
single vector. Thus, whereas the concatenation-based
model assumed that a string is remembered as a whole
item with letters tied to serial positions, the holographic
model assumed that a string is remembered as a sum of
encoded subunits (i.e., single letters, bigrams, trigrams,
etc.).

Jamieson and Mewhort (2011; Jamieson & Hauri, 2012)
showed that the convolution-based model fit data that its
concatenation-based predecessor did not (Kinder, 2010). On
the basis of that success, they argued that holographic rep-
resentation is a better method to represent the information
that people store about training and test strings and, there-
fore, provides a more accurate account of learning in the
artificial grammar task. There was, however, a limitation in
how the model was applied.

In most artificial grammar experiments, participants
are granted freedom to encode training and test strings
as they choose. Thus, to accommodate the fact that they
could not know a participant’s private encoding strate-
gies, Jamieson and Mewhort (2010) adopted an assump-
tion of random, rather than structured, sampling of
subunits from training and test strings. For example,
when presented with a string RBGRGBPY, it was as-
sumed that participants and, thus, the model employed
a random sampling of units. Whereas the adoption of
random sampling was a necessary step to model peoples’
performance with free encoding, Jamieson and Mewhort
(2010) speculated that their holographic encoding scheme
could be used to predict the influence of structured
encoding. This article follows up on this claim.

In the work that follows, we apply the holographic ex-
emplar model (HEM) to data from an artificial grammar
experiment in which peoples’ encoding was brought under
experimental control. However, we begin by applying the

model to an implicit rule-learning procedure reported by
Wright and Whittlesea (1998).

Wright andWhittlesea (1998)

Wright and Whittlesea (1998) reported an experiment that
showed a predictable influence of encoding on performance
in a hidden rule-learning task. In the experiment, partici-
pants read digit strings, all of which were four digits in
length and all of which conformed to an odd—even—odd—
even rule. For example, 1234 was a permissible string, but
1235 was not. Participants were assigned to one of two
encoding conditions. Participants assigned to a ones condi-
tion read each training string aloud as successive digits (e.g.,
1234 was read as “one, two, three, four”). Participants
assigned to a fens condition read each training string aloud
as successive pairs (e.g., 1234 was read aloud as “twelve,
thirty-four”). Following training, participants in both encod-
ing conditions performed two-alternative forced choice rec-
ognition for the studied strings; unknown to participants, all
test strings were new, with one string in each test pair
consistent with the odd—even—odd—even rule and the other
inconsistent with the odd—even—odd—even rule. Wright and
Whittlesea argued that if participants implicitly learn and
use the odd—even rule (i.e., automatic rule learning), perfor-
mance in the two groups ought to be identical. However, if
encoding influences what is learned, performance should
differ in the two conditions.

The top panel in Fig. 1 shows the results of the experi-
ment. As is shown, participants in the tens condition dis-
criminated rule-bound from rule-violating test strings better
than did participants in the ones condition, p < .05. The
difference is consistent with the position that encoding
influences performance and contradicts the position that
performance is under the control of implicit learning. For
our purposes, Wright and Whittlesea’s (1998) data illustrate
that encoding influences judgments at test and offers a
concrete target to evaluate the holographic model’s ability
to accommodate differences in performance as a function of
differential encoding.

We now describe Jamieson and Mewhort’s (2011) HEM.
Afterward, we apply the model to Wright and Whittlesea’s
(1998) experiment. If the model offers a capable account of
differential encoding in the ones and tens conditions, it will
predict better discrimination of rule-conforming from rule-
violating items in the tens than in the ones condition.

The holographic exemplar model

Jamieson and Mewhort’s (2011) HEM merges the holo-
graphic representation scheme from Jones and Mewhort’s
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Fig. 1 The top panel shows participants’ performance in Wright and
Whittlesea’s (1998) Experiment 3B. The bottom panel shows the
holographic exemplar model’s fit to the results. Whiskers on both
graphs are standard errors

(2007) BEAGLE model of semantic memory with the stor-
age and retrieval model from Hintzman’s (1984, 1986)
MINERVA 2 model of episodic memory.

Representation

In the HEM, a letter is an # dimensional vector. Each element
in a letter vector takes a random value sampled from a
normal distribution with mean zero and variance 1//n.
Letter subsequences are formed by applying noncommuta-
tive circular convolution to letter vectors. Letter strings are
formed by summing encoded letter subsequences.

Circular convolution encodes an association between two
vectors, x and y, to a new vector, z,

n—1

Zi = Xj X V(i — j)modn
Jj=0

{fori=0ton—1} (1)

where the dimensionality of all three vectors, X, y, and z are
equal to n. Figure 2 depicts the operation. Circular convo-
lution is commutative, distributes over addition, and pre-
serves similarity.

Commutativity implies symmetric association. Thus,
the representation of a bigram AB is equal to the rep-
resentation of a bigram BA. Because people tend to
encode symbols from left to right (i.e., 4B # BA),
circular convolution’s commutative property is undesir-
able. We solve the problem by using a noncommutative
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Fig. 2 The figure shows two vectors, x and y (both of dimensionality n =
5). The outer-product of x and y is an n x n matrix. The arrows show how
the elements of the outer-product matrix are summed during circular
convolution to produce a summary vector, z

version of circular convolution, accomplished by scram-
bling the indices of the letter vectors before applying
circular convolution to them (see Jones & Mewhort,
2007, Appendix A). Whereas noncommutative circular
convolution distributes over addition and preserves sim-
ilarity, it is neither commutative nor associative.

From here forward, we denote noncommutative circular
convolution using an asterisk (e.g., z = x*y). For brevity, we
use the term convolution in place of noncommutative circular
convolution.

A vector returned by convolution is orthogonal in expec-
tation to its constituents. Thus, a is orthogonal in expecta-
tion to a*b, which is orthogonal in expectation to a*b*c,
and so on. Because we are using noncommutative convolu-
tion, the convolution of two vectors also differs depending
on the order in which the vectors are convolved: a*b is
orthogonal in expectation to b*a, which is orthogonal in
expectation to b*a*c, and so on.

In addition to serial order information within units,
convolution can be used to encode information about
the order of encoded units (Cox, Kachergis, Recchia, &
Jones, 2011; Hannagan, Dupoux, & Christophe, 2011).
For example, using vectors a, b, ¢, and d to represent
letters A through D and vectors 1 and 2 to represent the
order of units in a string, the vector a*b*1 + c*d*2
represents “AB followed by CD,” whereas the vector
c*d*1 + a*b*2 represents “CD followed by AB.” In
the simulations that follow, we will use order codes to
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capture the fact that participants know the order of the
units they encode.

Storage and retrieval

Memory in the HEM is an m by n matrix, M, where m
is the number of independent traces in the matrix and n
is the number of features in each trace. Imperfect
encoding is simulated by resetting a proportion of ele-
ments in M to zero, where the degree of loss is con-
trolled by a parameter L that specifies the probability
of storing a feature in memory correctly; thus, each
element in M has a probability of 1 — L of reverting
to zero. Prior work with the concatenation model
showed that decreasing L impairs memory performance
overall but has a greater impact on performance in
tasks that require knowledge of the specific (e.g., rec-
ognition), as compared with tasks that require knowl-
edge of the general (e.g., classification; see Jamieson et
al., 2010).

Retrieval in the HEM follows a resonance metaphor.
Presenting a probe vector to memory causes all traces in
memory to activate in parallel. Each trace’s activation is a
nonlinear function of its match to the probe. In the model,
the activation of trace i, a;, is computed as

.Zl pj x M;
J=

>p

Jj=1

where p is the probe (i.e., a row vector), M is memory,
i indexes the 1...m traces in memory, and j indexes the
l...n columns in the probe and memory matrix.
Nonlinearity is introduced in retrieval by raising the
similarity metric (the term inside brackets in Equation 2) to
an odd numbered exponent. The exponential transformation
ensures that retrieval is selective to the traces that match the
probe most closely.

The information that is retrieved from memory is a vector
called the echo. The echo is a weighted sum of all traces in
memory, where each trace’s contribution to the sum is
weighted in proportion to its activation by the probe. The
echo is computed as

m

cj:Azla"XM"j {forj=1...n} (3)

where ¢ is the echo, a; is the activation of trace i, M is
memory, i indexes the 1...m rows (i.e., traces) in memory,
and j indexes the 1...n columns (i.e., features) in both the
echo and memory matrices.

Judgment of grammaticality is predicted by a scalar,
I, called echo intensity, that indexes the match between
the probe, p, and the echo, ¢. Echo intensity is com-
puted as

lej X Gy
[ = (4)
NN

where j indexes the 1...n columns (i.e., stimulus features) in
both the probe and the echo. In the simulations that follow,
results are presented as mean echo intensities across multiple
simulated participants. An item is endorsed to the extent that it
can be reproduced from memory.

Simulation of Wright and Whittlesea (1998)

We conducted 100 independent simulations of the ones encod-
ing condition and 100 independent simulations of the tens
encoding condition. Each independent simulation followed
the same procedure. First, we generated a unique random
vector for each digit 1 through 8. Second, we encoded each
of the training and test strings depending on the relevant
encoding scheme. In the ones encoding condition, strings were
encoded by summing the convolution of each digit with its
position. In the tens encoding condition, strings were encoded
by convolving the first two digits in a string along with order
vector 1 and the second two digits in a string along with
order vector 2. For example, the string 1234 (i.e., rewritten as
ABCD here for clarity of notation) was encoded as a*1 + b*2 +
¢*3 + d*4 in the ones condition and as a*b*1 + ¢*d*2 in the
tens condition. Third, the training strings were stored to mem-
ory, L = 1.0. Fourth, we computed the echo intensity for each
of the test items. Because Wright and Whittlesea (1998) did not
provide their stimulus materials, we generated a set based on
their described algorithm (see Table 1). Code for the simulation
can be downloaded from our Web site."

Simulation results are presented in the bottom panel of
Fig. 1. Like Wright and Whittlesea’s (1998) participants, the
HEM discriminated rule-consistent from rule-inconsistent test
items in both the ones and tens encoding conditions but
discriminated better in the tens than in the ones condition.
However, mean echo intensity for grammatical items in the
tens condition is slightly lower, rather than slightly higher, as
compared with mean echo intensity for grammatical items in
the ones condition. A comparison of the upper and lower
panels shows that this is at odds with the experimental data.

We conducted additional simulations with random, rather
than structured, sampling of subunits (i.e., the method used in

! Code: http://home.cc.umanitoba.ca/~jamiesor/LabPage/Data_models/
Data_models.html.
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Table 1 Materials used in the simulation of Wright and Whittlesea’s
(1998) experiment

Training exemplars Test exemplars

Rule bound Rule violating
1216 1612 2418
1234 3412 1532
1638 3816 1846
1652 5216 1857
3458 5834 4256
3474 7434 3572
3876 7638 3648
3812 1238 3615
5216 1652 6418
5234 3452 5732
5838 3858 5646
5852 5258 5657
7458 5874 8256
7476 7674 7378
7674 7476 7862
7612 1276 7815

Italicized/bolded digits are rule violations

previous applications of the HEM). Those simulations failed
to produce Wright and Whittlesea’s (1998) data; discrimina-
tion of rule-consistent from rule-inconsistent test strings was
equivalent in the ones and tens conditions. We conclude that
the HEM can be used to capture differences in peoples’
performance as a function of differential structured encoding.
Although the HEM captures Wright and Whittlesea’s (1998)
data to show that encoding influences performance in an im-
plicit rule-learning task, Wright and Whittlesea’s rule-learning
procedure differs in several important ways from an artificial
grammar task. First, whereas Wright and Whittlesea tested
participants’ learning of a simple rule, based on the odd/even
concept, participants in a standard artificial grammar task are
tested on a complex network of rules defined by a sequential
contingency structure. Second, whereas Wright and Whittlesea
did not inform their participants that the training materials were
constructed using a rule and asked their participants to perform
recognition, participants in a standard artificial grammar task
are informed that training items were constructed according to
rules and are asked to classify novel test strings as either
consistent or inconsistent with those rules. Finally, whereas
Wright and Whittlesea tested performance with a two-
alternative forced choice test, participants in a standard artificial
grammar task judge the grammatical status of each test string
independently. For all three reasons, our analysis of Wright and
Whittlesea’s experiment does not speak directly to the problem
of artificial grammar learning. To address the issue, we report an
artificial grammar experiment to match the experimental struc-
ture in Wright and Whittlesea’s implicit rule-learning study.

@ Springer

Experiment

We designed an artificial grammar task to match key
features from Wright and Whittlesea’s (1998) implicit
rule-learning task. In a training phase, participants stud-
ied 30 grammatical training strings in one of two
encoding conditions. At test, they rated the grammati-
cality of 40 unstudied test strings: 20 grammatical and
20 ungrammatical. Participants assigned to a bigrams-
encoding condition were shown training strings in three
successive stages (e.g., MORVTX was presented as MQO
for 1,666 ms, MORT for 1,666 ms, and MORVTX for
1,668 ms). Participants assigned to a trigrams-encoding
condition were shown training strings in two successive
stages (e.g., MORVTX was presented as MQOR for
2,500 ms and MQORTVX for 2,500 ms). Figure 3 shows
the presentation methods.” Despite the differences be-
tween our artificial grammar experiment and Wright and
Whittlesea’s rule-learning experiment, both ask the same
question: Does manipulating how participants encode
materials in training impact their judgments of structural
consistency at test?

Method
Participants

Ninety-two undergraduate students from the University
of Manitoba participated in the experiment. Half of the
participants were assigned to the bigram-encoding con-
dition, and half to the trigram-encoding condition. All
participants reported normal or corrected-to-normal
vision.

Apparatus

The experiment was administered on personal computers
(PCs). Each PC was equipped with a 22-in. wide-screen
monitor, a standard keyboard, and a standard mouse.
Participants responded using the mouse to click on words
displayed on the monitor and using the keyboard to report
the rules of the grammar.

Materials

Stimuli were strings of six letters. Only the letters M, O, R,
T, V, and X were used. Sequential rules were used to

2 The timing used in the experiment equates the overall presentation
time of each training string in the bigrams and trigrams conditions but
does not equate the presentation time per unit (i.e., bigram and trigram)
in the two conditions. Unfortunately, there is no way to simultaneously
equate both factors.
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Bigrams Condition Trigrams Condition

VR 1666 ms VRT 2500 ms

VRTQ 1666 ms VRTQXR 2500 ms

VRTQXR 1668 ms

Fig. 3 Description of how stimulus presentation was timed during the
training phase of the bigram (left panel) and trigram (right panel)
encoding conditions in the reported experiment

constrain which letters could and could not follow one
another from left to right in a grammatical string.

The rule set—probabilities with which the letters M, O,
R, T, V, and X could follow one another in successive serial
positions of a string—is shown in Table 2. For example,
when the letter M appeared at any position in a string, the
letters ¥ and X could follow, each with probability .5, but
letters M, O, R, and T could not. Transition grammars, like
the one we use here, solve problems associated with finite
state grammars used in most studies of artificial grammar
learning. In particular, they do not impose positional con-
straints; they describe the transition probabilities among
symbols at all positions in a sequence; they can be used to
construct a large number of strings; and because they de-
scribe only first-order symbol transitions, the number of rule
violations in ungrammatical strings can be controlled and
quantified (Jamieson & Mewhort, 2005).

The stimulus set for the experiment included 30 gram-
matical training strings, 20 grammatical test strings, and 20
ungrammatical test strings. Grammatical strings were con-
structed by selecting one of four letters, M, O, V, or X, to the

Table 2 The grammar shows transition probabilities among letters M,
O, R, T ¥, and X from position n of a sequence to position n + 1 of a
sequence

Letter (n + 1)

Letter (1) M Q R T \% X

M 000 000 000 000 050 0.0
Q 050 000 000 000 000 0.0
R 000 050 000 050 000  0.00
T 000 100 000 000 000  0.00
\% 000 050 050 000 000  0.00
X 000 000 033 033 033  0.00

Strings could begin with letter M, O, ¥, or X but could not begin with
letter R or 7. Any letter could end a string. The grammar is very
predictable, with a grammatical redundancy of .64 (Jamieson &
Mewhort, 2005).

first position in a string and assigning a letter to each
successive serial position of the string in accordance with
the rules in the grammar. Ungrammatical strings were con-
structed by assigning one of the four letters M, O, V, or X to
the first position in a string and then assigning any of the six
available letters to the remaining serial positions in the
string. Rule violations in the ungrammatical strings occurred
between the second and third and between the fourth and
fifth letters. Table 3 gives a complete list of the training and
test strings.

Procedure
Participants were tested in groups of 3—7. After participants
had been seated at different computer terminals, they were

told that they would be shown strings of letters and that it

Table 3 Materials used in the experiment

Training exemplars Test exemplars

Grammatical Ungrammatical
VRTQXR XVRTQX XTMVMX
XVQMVR XTQXRT QMRTMX
QMXVRQ XVQMXV VRVQRT
MXRQXT XRTQXT MXQXMV
XVQXRT QXTQXV XVMVTQ
MXRQXR VRQXTQ QXXRMV
MXVQMV XRTQXR VQRQVR
VQMXTQ XTQMVR MVTQVR
MVRQXV QMVQXR XTRQVQ
VQXRTQ MVQXVR QMMVTQ
XRTQMX VQMVRT VRMXQM
QXRQMX XRTQXV MXQMRQ
XTQMXT VQXTQX XRMVTQ
MXVRTQ MXRTQX QXMVVR
XRQMXT MXRTQM VQTQRT
QXRQMV VRTQMX MVXTVQ
QXTQMX QMXTQX XVTQRQ
MVRTQX MVRQXT XRMXQM
QXVQXR VRTQXV XRVQTQ
MVQXRT QXVQXT MXQMRT
XVRTQM
VRTQMV
QMXTQM
QMXRTQ
XRQXVR
QXVRTQ
MVQMXR
MXRQMV
VRQXRQ
QMVRQM
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would be their job to read each one. The participants were
not yet told about the judgment-of-grammaticality test that
would follow.

The participant initiated the training phase by clicking on
the message “Start” that was displayed at the center of the
computer screen, after which the screen was cleared for
1,000 ms. Immediately thereafter, the first training string
was displayed in 30-point Arial font. At a distance of 60 cm
(i.e., approximately an arm’s length from the computer
screen), each letter had a visual angle of approximately
1.01° vertical and 0.82° horizontal.

Participants assigned to the bigram-encoding condition
saw each training string presented as three successive
bigrams. Participants assigned to the trigram group saw each
string presented as two successive trigrams. Figure 3 gives a
more detailed description of how each string was presented
in the two encoding conditions.

After a string had been presented, the screen was cleared
for 1,000 ms; immediately thereafter, the next string was
presented. This cycle was repeated until all 30 of the train-
ing strings had been presented.

Following the training phase, the screen was cleared, and
instructions for the test phase were presented. A button
marked “OK” was presented beneath the instructions. The
instructions informed the participant that all of the studied
strings were constructed according to the rules of an artifi-
cial grammar and that he or she would now rate the gram-
maticality of 40 novel unstudied test strings, half of which
would conform to the rules and half of which would not.
The instructions told participants to raise their hand if they
had any questions and, otherwise, to continue on to the test
phase by clicking on the “OK” button.

On each test trial, a string was presented at the center of
the screen. In contrast to the training phase, each test string
was presented as a whole without any manipulation of
presentation. A line approximately 5 cm in length was
displayed 3 cm below the string with a slider positioned at
its center. The phrases “Rule Violating,” “Unsure,” and
“Rule Conforming” were displayed at the left, center, and
right of the line, respectively. A button labeled “OK” was
centered approximately 2 cm below the line. Although
participants were not shown numbers on the slider, the left
extreme of the line corresponded to a rating of —100, the
right extreme corresponded to a rating of +100, and the
midpoint of the line corresponded to a rating of 0.

At the start of each test trial, the slider was positioned at
the center (neutral point) of the line. To rate the grammati-
cality of the test string, the participant used the computer
mouse to position the slider on the line and then clicked on
the word “OK.” Immediately thereafter, the screen was
cleared, and, 1 s later, the next string was displayed. If the
participant did not move the slider from the neutral position
before clicking on the word “OK,” a message instructed the

@ Springer

participant that he or she must move the slider from the
neutral position in order to complete the trial. This cycle
continued until all of the 40 test strings had been presented.

After all of the test strings had been presented and the
participant had provided a response to each one, the screen
was cleared; 1,000 ms later, a text editor appeared on the
computer screen. A message above the text editor invited
the participant to use the computer keyboard to describe the
rules that he or she thought had been used to construct the
training strings. When they were finished, they clicked on a
button marked “OK.” When the participant clicked on the
button, a message appeared thanking the participant for his
or her participation in the study.

Results and discussion

Participants’ use of the continuous rating scale was extreme-
ly varied. Whereas some participants used the full range of
the scale, other used an extremely limited range of the scale.
Because of those differences, ratings from overconfident
participants overshadowed ratings from conservative partic-
ipants. To solve the problem, we rescored the continuous
ratings as binary decisions. Ratings greater than zero were
scored as grammatical responses. Ratings less than zero
were scored as ungrammatical responses.

The top panel in Fig. 4 shows the mean percentage of
grammatical responses that participants gave to the gram-
matical and ungrammatical test strings. Performance is
shown separately for the bigram- and trigram-encoding
groups. As is shown, participants in both groups endorsed
grammatical strings more than ungrammatical strings.
However, participants in the trigram-encoding condition
discriminated grammatical from ungrammatical strings bet-
ter than did participants in the bigram-encoding condition. A
test for the interaction between stimulus type and encoding
condition confirmed the difference, F(1, 90) = 5.27, MSE =
181.75, p < .05.

We now apply the HEM to the materials and procedure of
our experiment. If the model’s fit to Wright and Whittlesea’s
(1998) rule-learning experiment is general, the model
should track the influence of encoding in our artificial
grammar experiment.

Simulation of experiment

We conducted 100 independent simulations of the bigram-
encoding condition and 100 independent simulations of the
trigram-encoding condition from our experiment. Each in-
dependent simulation followed the same procedure. First,
we generated a unique random vector for each letter in the
training and test lists. Second, we encoded each of the
training and test strings using the encoding scheme that
was relevant to the simulated condition. For example, the
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Fig. 4 The top panel shows the mean percentages of grammatical and
ungrammatical test strings that participants endorsed as grammatical.
Performance is shown separately for the bigram- and trigram-encoding
groups. The bottom panel shows the holographic exemplar model’s fit
to the data. Whiskers on both graphs are standard errors

string VRTQXR was encoded as v*r*1 + t*q*2 + x*r*3
(i.e., “VR followed by TQ followed by XR”) in the bigram
condition and v*r*t*1 + q*x*r*2 (i.e., “VRT followed by
OXR”) in the trigram condition. Third, the training strings
were stored to memory, L = 1.0. Fourth, we computed the
echo intensity for each of the test items. Code for the
simulation can be downloaded from our Web site.’

The lower panel in Fig. 4 shows mean echo intensities for
grammatical and ungrammatical test items as a function of
encoding condition. Like experimental participants, the HEM
discriminated grammatical from ungrammatical test strings
better in the trigram-encoding condition than in the bigram-
encoding condition. However, the HEM makes this discrim-
ination on the basis of a better hit rate and better correct
rejection rate in the trigrams group, whereas the empirical
data show that the locus of the better discrimination is mostly
due to a better correct rejection rate alone. Although this
mismatch does not impact the model’s ability to predict the
key discrimination, the imperfect fit is worth noting.

We used the model to explore the possibility that partic-
ipants might have adopted other encoding schemes. For ex-
ample, participants might have encoded strings as a*b*1 +
a*b*c*d*2 + a*b*c*d*e*1*3 (i.e., “4B, followed by ABCD,
followed by ABCDEF™) in the bigrams condition and

3 Code: http://home.cc.umanitoba.ca/~jamiesor/LabPage/Data_models/
Data_models.html.

a*b*c*1 + a*b*c*d*e*f*2 (i.e., “4BC followed by
ABCDEF”) in the trigrams condition. Alternately, they might
have encoded strings hierarchically as a*b*1 + (a*b*1)*
(e*d*2) + (a*b*1)*(c*d*2)*(e*f*3) (i.e., “4B, AB—CD, and
AB-CD—-EF”) in the bigrams condition and a*b*c*1 +
(a*b*c*1)*(d*e*f*2) (i.e., “ABC, ABC-DEF”) in the tri-
grams condition. Simulations with these encoding strategies
failed to reproduce the experimental results, since neither set
of alternative encoding schemes showed better discrimination
in the trigrams than in the bigrams condition. We take those
failures as corroborative evidence for our position that partic-
ipants encoded strings as we had hoped that our experimental
manipulation would make them. However, we acknowledge
that there are other ways that participants might have encoded
the strings in our experiment, and we invite researchers to
adapt our code to examine their hypotheses about those other
potential strategies.

General discussion

After studying grammatical training exemplars, participants
can discriminate grammatical from ungrammatical test
items. According to an exemplar-based account of perfor-
mance, judgment of grammaticality follows from a process
of retrospective inference from memory. Test strings that
resemble the training items are classified as grammatical;
test strings that differ from the training items are classified
as ungrammatical.

We have reported a new experiment to reinforce that
performance in an artificial grammar task varies depending
on how items are represented in memory. We have
explained the data using a convolution-based model of
memory that accommodates differential representations of
items so that representations used in the simulation match
participants’ representations in the corresponding treatment
conditions. The model we have proposed blends the holo-
graphic representation component of Jones and Mewhort’s
(2007) semantics model with the storage and retrieval com-
ponents of Hintzman’s (1986) MINERVA 2 model.
Importantly, we wish to emphasize that the model fits reflect
a priori predictions derived from the HEM before experi-
mentation, rather than post hoc fitting. Given this, it is
impressive that the model appreciates participants’ overall
better discrimination between rule-consistent and rule-
violating items in Wright and Whittlesea’s (1998) experi-
ment (see Fig. 1) than of grammatical and ungrammatical
items in our own experiment (see Fig. 4). We conclude that
the holographic representation scheme of the HEM can be
used to capture what people notice in training and test
strings and that the exemplar-based model for storage and
retrieval can be used to understand how exemplars are
stored and deployed in the judgment-of-grammaticality task.
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Holographic representation has several strengths. First,
convolution is a single method for encoding multiple forms
of information: serial position information, serial order in-
formation, whole-item information, and hierarchical struc-
ture. Thus, convolution-based representation is a general
and flexible framework for examining representation in
memory and the influence that representation plays in per-
formance and decision. Second, because convolution dis-
tributes over addition, it offers a distributed representation
of exemplar structure that affords parallel access to stored
information, thus solving the complications of computing
the similarity between a probe and a memory trace that
occur from feature misalignment in vectors under compari-
son. Third, holographic representation can be used to model
several different cognitive problems—semantic representa-
tion (Jones & Mewhort, 2007), orthographic representation
(Cox et al.,, 2011; Hannagan et al., 2011), logical inference
(Eliasmith, 2004), free recall (Metcalfe-Eich, 1982;
Murdock, 1982, 1983, 1995), memory disorder (Metcalfe,
1993), serial recall (Gabor, 1968, 1969; Longuet-Higgins,
1968; Poggio, 1973)—and so offers a general tool for rep-
resentation over research domains. Finally, holographic rep-
resentation is a biologically plausible model and so satisfies
computational constraints imposed by brain physiology
(Eliasmith, 2004).

Independently of our focus on artificial grammar learn-
ing, our analysis of representation and its impact on learning
and memory in the artificial grammar task joins with a
growing effort to criticize and improve representation in
models of memory more broadly. A clear distinction can
be drawn between the current convolution-based model and
its concatenation-based predecessor (e.g., Jamieson &
Mewhort, 2009, 2010). Because concatenation encodes se-
rial position rather than serial order information in strings, it
fails to capture the information that people extract and
remember about training and test strings (i.e., groups of
sequences or chunks). Convolution, by contrast, encodes
serial order rather than serial position information and there-
by successfully captures the information that people extract
and remember about training and test strings. The distinc-
tion is at the heart of our position. We presented the same
training and test strings to people in the bigrams- and
trigrams-encoding conditions, but they behaved differently
at test depending on how we instructed their encoding. If
one cannot capture differences of representation, one cannot
capture artificial grammar learning.

Our examination of representation in the artificial gram-
mar task also joins a broader and emerging theme of recent
research. Jones and Mewhort (2007) developed a computa-
tional model for learning the semantic structure of English.
Johns and Jones (2010) used those structured representa-
tions to show that using random vectors to represent words
limits the ability to make sense of peoples’ performance in
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semantic memory tasks. Cox et al. (2011) made a similar
argument by using holographic representation to show that
modeling the orthographic structure in printed words is
necessary to model peoples’ performance in word recogni-
tion (see also Hannagan et al., 2011). The work here shows
that building a better representation of letter strings helps to
capture peoples’ performance in an implicit learning task, an
idea also explored by Dienes (1992), who compared perfor-
mance in the artificial grammar task using single letters and
bigrams in neural network models. Whereas a simplification
of representation (i.e., use of random vectors) might have
been a necessary strategy during early efforts to model
memory retrieval, it is growing increasingly clear that rep-
resentation is as important as retrieval and that a competent
model of memory must attend to both problems.

Throughout this article and elsewhere (see Jamieson &
Mewhort, 2005, 2009, 2010, 2011), we have argued for a
retrospective account of performance in the artificial gram-
mar task, in which participants infer the grammaticality of a
test item by its similarity to memory for training exemplars.
The position contrasts with the implicit learning view, in
which the cognitive system abstracts the grammar prospec-
tively in anticipation of future need. Redington and Chater
(2002) previously underscored the same distinction in terms
of lazy versus eager learning. Lazy learning is passive and
involves storage of experiences and generalization of those
experiences to new situations at test (e.g., judgments of
grammaticality). Eager learning, on the other hand, is active
and involves extraction of statistical regularities at study in
service of unknown future goals.

We cannot help but see performance in the judgment-
of-grammaticality and string completion tasks to be a
lazy and retrospective process. At training, participants
store the training items. At test, participants use their
memory of the training items to answer the odd ques-
tions put to them. It is difficult for us to imagine how
an cager learning system would know to extract a
grammar in anticipation of something so unusual as a
judgment-of-grammaticality task. Our computational
model of performance shows that lazy and retrospective
exemplar-based inference is sufficient to make sense of
the empirical data.
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Code used to conduct the reported simulation can be found here:
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