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Studies of implicit learning often examine peoples’ sensitivity to sequential structure. Computational
accounts have evolved to reflect this bias. An experiment conducted by Neil and Higham [Neil,
G. J., & Higham, P. A.(2012). Implicit learning of conjunctive rule sets: An alternative to artificial
grammars. Consciousness and Cognition, 21, 1393–1400] points to limitations in the sequential
approach. In the experiment, participants studied words selected according to a conjunctive rule. At
test, participants discriminated rule-consistent from rule-violating words but could not verbalize the
rule. Although the data elude explanation by sequential models, an exemplar model of implicit learning
can explain them. To make the case, we simulate the full pattern of results by incorporating vector rep-
resentations for the words used in the experiment, derived from the large-scale semantic space models
LSA and BEAGLE, into an exemplar model of memory, MINERVA 2. We show that basic memory
processes in a classic model of memory capture implicit learning of non-sequential rules, provided that
stimuli are appropriately represented.
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People are sensitive to regularities in their environ-
ment. In some cases, people can respond to those
regularities without deliberate effort, a phenomenon
typically referred to as implicit learning. Implicit
learning has been studied in the laboratory using
two primary tasks. One is a classification task:
Participants first study letter strings created using
a finite-state grammar. After studying grammatical
exemplars, participants can sort novel test exemplars

into grammatical versus ungrammatical sets with an
accuracy of about 60%. The second is a performance
task: Participants identify a target’s position by
pressing an associated response key. If the sequence
of targets is repeated, participants learn to respond
more quickly. In both tasks, the participants
cannot articulate the basis of their performance.
Structure is defined in both tasks by sequential
rules. Not surprisingly, standard models of implicit
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learning, including the simple recurrent network
(Dienes, Altmann, & Gao, 1999) and the competi-
tive chunking model (Servan-Schreiber &
Anderson, 1990), are focused on how people
learn sequential structure. Implicit learning,
however, is not restricted to cases involving sequen-
tial structure. For example, people can learn non-
sequential functions in a video game (Berry &
Broadbent, 1984), can learn to discriminate rule-
consistent from rule-violating line drawings
(Pothos & Bailey, 2000), and can appreciate
semantic structure (Higham & Brooks, 1997;
Neil & Higham, 2012).

In Neil and Higham’s (2012) experiment, par-
ticipants rated the meaning of 80 English words
and subsequently learned that the words had been
selected according to a rule. In one condition
(labelled RC-CA), each study word was either
rare and concrete (e.g., manganese) or common
and abstract (e.g., indicate). In a second condition
(labelled RA-CC), each study word was either
rare and abstract (e.g., beguiled) or common and
concrete (e.g., hotel). In a test phase, participants
tried to discriminate rule-consistent from rule-vio-
lating words in a two-alternative forced-choice
(2AFC) procedure. Whereas participants were
correct on 57.3% of the trials, they could not articu-
late the rule.

Neil and Higham’s (2012) results parallel those
from the standard artificial grammar classification
task (rule discrimination without rule knowledge).
However, in Neil and Higham’s example, the rule
was not sequential. Clearly, accounts of implicit
learning based on learning sequential structure are
incomplete. How, then, should implicit learning
be explained?

Brooks (1978; Vokey & Brooks, 1992) argued
that implicit learning in the artificial grammar
task reflected exemplar-based generalization: Test
probes that remind the learner of the studied
items are judged to be grammatical, and those
that do not are rejected as ungrammatical.
Jamieson and Mewhort (2009, 2010) implemented
Brooks’s idea in a computational account of
memory and showed that it accommodates per-
formance in the judgement of grammaticality,
string completion, and serial reaction-time tasks.

Their account was adapted from Hintzman’s
(1986) MINERVA 2, a multiple-trace model of
memory designed to model recognition and cued
recall in non-sequential stimulus domains. Given
that the model has been used to explain learning
in sequential and non-sequential domains, it
might provide an account of Neil and Higham’s
(2012) data.

THE MODEL

Previous work has expanded the explanatory
breadth of MINERVA 2 by borrowing the archi-
tectural and retrieval assumptions from Hintzman
(1986), but altering the way items in memory are
represented. In MINERVA 2, each item is rep-
resented by a random vector of binary feature
values (+1 and −1). To accommodate represen-
tation of nonsense letter strings, Chubala and
Jamieson (2013) altered the random representation
assumption to encode strings as collections of letter
subunits (e.g., bigrams; see also Jamieson &
Mewhort, 2011). In order to model Neil and
Higham’s (2012) task with MINERVA 2, we
extend this theme and represent items using
semantic vectors derived with two current models
of semantic representation: LSA (Landauer &
Dumais, 1997) and BEAGLE (Jones &
Mewhort, 2007).

Architecture and retrieval

Memory is an m × n matrix M, where each row
represents an event in the model’s history, m is
the number of independent traces stored in
memory, and n is the number of elements in each
trace. To model that fact that people’s encoding is
imperfect, we set a proportion of elements in M
to zero. The proportion of elements reset to zero
is controlled by a learning rate parameter L that
specifies the probability of storing each feature cor-
rectly. Each element in M has a probability 1 − L
of reverting to zero.

Retrieval follows a resonance metaphor.
Presenting a probe to memory activates all traces
in memory in parallel. The degree of activation is
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a function of the similarity of each item to the
probe. Activation in memory is collected in a
vector called the echo, which is equal to a weighted
sum of the activated traces in memory:

c =
∑m

i=1

∑n
j=1 pj ×Mij##########∑n

j=1 p2j
√ ###########∑n

j=1 M
2
ij

√

⎛

⎜⎝

⎞

⎟⎠

3

×Mi (1)

where c is the echo, m is the number of traces in
memory, n is the dimensionality of words in
memory, pj is feature j in the probe, Mij is feature
j in row i in memory, and Mi is trace i in memory.

Evidence that a probe is grammatical is indexed
by its echo intensity, I, which is computed as,

I =
∑n

j=1 pj × cj#####################
∑n

j=1 p2j
#########∑n

j=1 c
2
j

√√ (2)

where n is the dimensionality of a representation, pj
is feature j in the probe, and cj is feature j in the
echo. To model performance in a 2AFC test, the
echo intensity is computed for the two response
alternatives, and the alternative with the higher
echo intensity is selected.

Simulations

In the simulations, we used LSA and BEAGLE to
derive vectors that corresponded to the words used
in Neil and Higham’s (2012) study. In a first simu-
lation, we used LSA (Landauer & Dumais, 1997)
vectors (of dimensionality 300) derived by
Günther, Dudschig, and Kaup (2015) using the
TASA text corpus (Touchstone Applied Science
Associates, Inc.).1 In a second simulation, we
used vectors (also of dimensionality 300) derived
using the BEAGLE algorithm described by Jones
and Mewhort (2007) and by Recchia, Sahlgren,
Kanerva, and Jones (2015).

Because we assumed imperfect encoding (L
= .7), results differed from one simulation to the
next. Thus, we conducted 2000 independent simu-
lations in total: 1000 using Neil and Higham’s RA-
CC training list and 1000 using their RC-CA
training list. In all simulations, the test was con-
ducted using the same test pairs (see Neil &
Higham, 2012).2

Except for the difference in training lists, the
simulations were the same. We stored the relevant
training list to memory, forced information loss (L
= .7), computed the echo for each word in the test
list, and recorded the percentage of test trials in
which the echo intensity for the rule-consistent
alternative was greater than the echo intensity for
its rule-violating counterpart.

RESULTS

The simulation results are shown in Figure 1.
Results based on the LSA vectors are shown in
the left column; results based on the BEAGLE
vectors are shown in the right column.

As shown in the top row in Figure 1, the model
predicted a mean percentage correct score of 58.4%
with the LSA vectors and 55.2% with the
BEAGLE vectors. In both cases, the mean percen-
tage correct was better than chance, p, .01, and in
both cases the simulated mean percentage score was
close to the observed empirical mean percentage
correct score of 57.3% (SD = 5.1%) in Neil and
Higham’s (2012) study.

The middle and bottom rows in Figure 1 show
the distributions of percentage correct scores for
simulations with the RA-CC and RC-CA training
lists, respectively. As shown, the model predicted
better discrimination of rule-consistent from rule-
violating test items after studying the RA-CC
than after studying the RC-CA training list. The
prediction held for simulations using either the
LSA (M = 60.2% versus 56.6%) or BEAGLE (M
= 56.4% versus 54.0%) vectors. The difference

1The matrix of word vectors is publicly available as an .rda file at http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/
2Eight (5%) of the 160 words in the training lists and 15 (4.8%) of the 320 words in the test list were not included in the LSA and

BEAGLE vectors. To solve the problem we selected category-appropriate semantically similar words as replacements.
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matches results in Neil and Higham’s (2012) exper-
iment, where participants who studied the RA-CC
list (M = 59.8%, SD = 5.4%) outperformed partici-
pants who studied the RC-CA list (M = 55.6%,
SD = 4.2%), t(31) = 2.52, p = .017.3 Generally
speaking, increasing L betters performance on
this task, and decreasing L worsens it. However,
decreasing L does not reduce discrimination
below the level of chance, except at extremely
small values (L, .25), and does not eliminate the
advantage in test item discrimination after studying
the RA-CC training list.

In summary, a standard exemplar-based model
of memory discriminates rule-conforming from
rule-violating test words without knowledge of
the rule. The result holds whether words are rep-
resented using the LSA or the BEAGLE method.

GENERAL DISCUSSION

After reading words chosen according to a rule, par-
ticipants can discriminate novel rule-consistent
from rule-violating test words but cannot articulate
the rule. The results are consistent with the idea that
participants implicitly learned the rule. Indeed, this
is the conclusion that Neil andHigham (2012) drew
from their data. However, an exemplar model of
memory that does not know the rule can reproduce
the result. In short, the semantic structure of
materials used in the experiment was correlated
with the rule. Thus, when the model responded to
semantics, it behaved as if it were responding to
the rule. The computational demonstration shows
that the data do not force the conclusion of implicit
rule knowledge.

Figure 1. Distributions of simulated percentage correct classification scores as a function of training list. Results using LSA vectors are shown on
the left. Results using BEAGLE vectors are shown on the right.

3Neil and Higham (2012) reported the number of participants in each study condition as approximately equal (p. 1396); therefore,
our estimates are approximate assuming 17 participants in the RA-CC condition and 16 participants in the RC-CA condition.
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We are by no means the first to use exemplar
models to understand performance in implicit cat-
egorization tasks. Brooks (1978) promoted the
principles of an exemplar model as an explanation
for categorization in the judgement of grammati-
cality task, but never developed a formal model
(see also Vokey & Brooks, 1992). Nosofsky’s gen-
eralized context model (Nosofsky, 1987) has been
applied to numerous results from implicit categor-
ization tasks (e.g., Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 1998; Pothos & Bailey, 2000).
To our knowledge, however, we are the first to
combine exemplar-based processes with large-
scale semantic representations in an account of per-
formance in an implicit semantic categorization
task.

Why does our model work? A word’s properties,
including concreteness and word frequency, are
encompassed in the information captured by LSA
and BEAGLE. Accordingly, vectors for training
words selected using Neil and Higham’s (2012)
rule will, on average, be more similar to vectors
for test words selected using the same rule. As a
result, MINERVA 2’s familiarity-based decisions
perform the discrimination between rule-consistent
and rule-discriminating words without knowledge
of the rule.

In light of the model’s success in reproducing
Neil and Higham’s (2012) results, to argue that
participants implicitly learned the rule implies
that LSA and BEAGLE tacitly and proactively
sorted words into separate regions in semantic
space so that a rule-based discrimination process
could reflect the relevant properties. There is no
mechanism in either LSA or BEAGLE to
support this conclusion. Even assuming there
were, MINERVA 2 has no mechanism with
which to apply a conjunctive rule. The model com-
putes familiarity and selects the alternative with the
greater familiarity. Because words that share con-
creteness and frequency are more likely to be
semantically related than words that do not, the
model discriminates the test stimuli without
knowing the conjunctive rule.

Neil and Higham (2012) designed their exper-
iment to challenge current theories of implicit
learning. As they pointed out, theories of implicit

learning have focused on sequential structure and,
therefore, are ill equipped to explain learning of
non-sequential structure. They argued that the
limitation follows naturally from a stereotyped
reliance on the artificial grammar task and the
design of models to accommodate data from that
task. We have demonstrated that a classic global-
similarity memory model—a model known to
capture judgement of grammaticality in the artifi-
cial grammar task (e.g., Chubala & Jamieson,
2013; Jamieson &Mewhort, 2011)—also discrimi-
nates words in Neil and Higham’s analogous rule-
learning task.

Importantly, however, our simulations allow us
to draw more forceful conclusions than Neil and
Higham (2012) could draw from their data alone.
Whereas they argued against sequential models
for the process of implicit learning, we argue
against implicit learning as a process altogether.
For instance, Neil and Higham took self-report
measures of the features that participants used to
classify test words (see their Table 4). A majority
of participants reported using word familiarity
(62%) and word meaning (52%), followed closely
by semantic category and word associations (48%
each). Whereas these choices do not reflect the
components of the conjunctive rule, they do
reflect the semantic features captured by LSA and
BEAGLE vectors, as well as the familiarity-based
process by which MINERVA 2 accomplishes
retrieval. Participants’ behaviour in the experiment
could be explained by either non-verbalizable learn-
ing of a conjunctive rule, or by a more general
appreciation of semantic relationships. The same
behaviour observed in our model supports only
the latter explanation.

Although the MINERVA 2 approach explains
both the artificial-grammar and semantic-rule
tasks, it uses different representations for the two
kinds of task. The fact that different represen-
tations are used follows from the task demands.
As Jamieson and Mewhort (2011) argue, faced
with nonsense letter strings, participants encode
materials as best they can by parsing the strings
into subunits and remember the strings as aggrega-
tions of those units. Faced with words, by contrast,
participants encode meaning rather than subgroups
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of letters. In both cases, a common set of retrieval
processes accommodates performance within a
given stimulus environment. Whether other
approaches, such as auto-associative neural net-
works (e.g., Vokey & Higham, 2004), can also
accommodate the results is an open and decidedly
worthwhile question.

Dienes (1992) suggested that a competent
model ought to capture not only participants’
average performance on a task, but also the
pattern of performance on individual test items
(see also Jamieson & Mewhort, 2010). In the
context of the semantic implicit learning task, a
competent model ought to predict any systematic
patterns of bias toward certain test words or word
categories. That we limited our simulations to
average performance should not be taken as a
stand against Dienes’s dictum. An item-level analy-
sis on a much larger set of data presents a rational
next step to more fully evaluate our model’s per-
formance in this task.

As it stands, we take the model’s success as an
echo of advice from Newell (1973). He argued
that an understanding of human behaviour
demands more than a list of phenomena paired
with local explanations. Rather, it demands
formal theory to approach a wide range of phenom-
ena from a more global perspective, in which
common principles are shown to accommodate
diverse datasets (see also Simon, 1956;
Surprenant & Neath, 2009). The current paper
contributes to this overarching goal and suggests a
fruitful direction for future contributions: the
merging of semantic representations with basic
processes of memory.
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