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Cognitive psychology has a history of dividing and decon-
structing behaviours into different functions served by dif-
ferent systems. The benefit is a disciplinary division of 
labour in which different laboratories examine different 
problems (e.g., classification and recognition) with the 
eventual hope of reunification. However, that goal has 
been neglected, and instead, the strategy of division and 
deconstruction has fostered a fractionated explanation of 
human behaviour. The current state of memory theory pro-
vides a striking example of the problem.

The dominant view is that memory is composed of mul-
tiple systems, each serving unique purposes and operating 
under unique principles (e.g., Eichenbaum & Cohen, 2001; 
Schacter & Tulving, 1994; Tulving, 1985). By a typical 
conceptualisation of the multiple-system perspective, 
memory is divided into an explicit system and an implicit 
system which are further divided into systems for episodic 
memory, semantic memory, habits, non-associative learn-
ing, classical conditioning, and priming (Cohen & Squire, 

1980). Each of those systems is the subject of a wealth of 
research and theory, but there is very little integration 
among them.

A dissenting view is that memory is a unified cognitive 
system that serves multiple purposes and operates under a 
common set of principles (e.g., Benjamin, 2010; Berry, 
Kessels, Wester, & Shanks, 2014; Higham & Vokey, 1994; 
Higham, Vokey, & Pritchard, 2000; Jamieson & Mewhort, 
2009a, 2009b, 2010, 2011; Kinder & Shanks, 2001, 2003; 
Nosofsky, 1986, 1987, 1988, 1991; Nosofsky & Zaki, 1998; 
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Abstract
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Shanks & Perruchet, 2002; Shanks & St. John, 1994; 
Surprenant & Neath, 2013; see also Bussey & Saksida, 
2007; Gaffan, 2002 for the same argument applied to non-
human animals). However, the single-system account is, 
itself, divided into a number of competing single-system 
theories that agree in spirit despite differing in detail. Most 
of the theories have been examined in isolation, with each 
researcher working within his or her preferred theory. In 
more extreme cases, theorists have focused on critiquing 
one theory in favour of another (Kinder, 2010; Murdock, 
2008; Nairne & Neath, 1994; Starns, White, & Ratcliff, 
2010). In our view, the focus on differentiating single-sys-
tem accounts of memory dissociation has overshadowed the 
strong agreement among the different theories. What forms 
of evidence are preventing a reunification of memory?

The bulk of evidence for the multiple-system perspec-
tive rests on empirical dissociations, where an independent 
variable (e.g., word frequency) has differential influence 
on two dependent variables (e.g., recognition and recall). 
Dissociations can occur under a wide variety of circum-
stances. However, the strongest cited evidence comes from 
observations of amnesic patients, who suffer from impaired 
recognition and recall but perform normally in other labo-
ratory tasks such as categorisation and priming (e.g., 
Cohen & Squire, 1980; Knowlton, Ramus, & Squire, 1992; 
Knowlton & Squire, 1993, 1994; Knowlton, Squire, & 
Gluck, 1996; Squire, 2004). By the multiple-system per-
spective, the dissociations imply a distinction between the 
systems supporting the two classes of tasks. Explicit mem-
ory supports recognition and recall, whereas implicit 
memory supports categorisation and priming. Following 
on that premise, amnesia reflects selective damage to the 
explicit memory system.

However, the implication of a dissociation is uncertain. 
First, a dissociation is often consistent with both the sin-
gle-system and the multiple-system perspective (Dunn & 
Kirsner, 1988, 2003; Van Orden & Kloos, 2003; Van 
Orden, Pennington, & Stone, 2001). By rules of reason, 
evidence that is consistent with two competing theories 
lacks the necessary logical force to reject one in favour of 
the other. Therefore, many documented dissociations lack 
the necessary logical force to reject the single-system per-
spective in favour of the multiple-system perspective. 
Second, important differences in methods and materials 
between the classes of tasks are often glossed over, making 
it unclear which factors drive the dissociations. For exam-
ple, recognition requires discrimination between studied 
and unstudied items, whereas classification requires dis-
crimination among unstudied items, a difference that can 
be sufficient to produce a dissociation (Jamieson, Holmes, 
& Mewhort, 2010).

In defence of the single-system perspective, theorists 
have adopted a strategy of computational analysis and 
implemented formal models of memory to reproduce the 
dissociations observed in experiments (e.g., Benjamin, 

2010; Jamieson, Holmes, & Mewhort, 2010; Kinder & 
Shanks, 2001, 2003; Malmberg, Zeelenberg, & Shiffrin, 
2004; Nosofsky, Little, & James, 2012; Nosofsky & Zaki, 
1998; Shanks & Perruchet, 2002; Zaki & Nosofsky, 2001). 
By that strategy, each demonstration is added to a database 
of demonstrations that provides support for the claim that 
dissociations do not force the multiple-system perspective 
as traditionally thought.

However, the success of the models does not provide 
direct evidence against the multiple-system perspective. In 
fact, it is unclear what kind of evidence would be sufficient 
to reject the multiple-system perspective. The problem is 
obvious: a single-system theory can be nested in a multi-
ple-system competitor. Therefore, a multiple-system the-
ory can typically accommodate any evidence that its 
single-system competitor can (and more) strictly by virtue 
of its added complexity.1 Parsimony dictates favouring the 
account with fewer parameters (i.e., the single-system per-
spective). However, parsimony can be an ambiguous term 
in the context of modern psychological theory.

Theorists have also adopted a strategy of experimental 
analysis, introducing manipulations to simulate amnesic 
behaviour in healthy controls (e.g., Graf, Mandler, & 
Haden, 1982; Jamieson et  al., 2010; Nosofsky & Zaki, 
1998; Woods & Percy, 1974; Zaki & Nosofsky, 2001). The 
manipulations vary (e.g., Nosofsky and Zaki varied the 
delay between study and test), but the underlying logic is 
the same as the computational work; manipulating a single 
parameter is sufficient to produce dissociations tradition-
ally thought to force a multiple-system perspective. To the 
extent that a dissociation can be reproduced independent 
of a memory disorder, the evidence challenges the claim 
that the selective nature of the dissociation maps on to the 
selective nature of the physiological damage.

However, the same problem of parsimony plagues the 
empirical approach. So long as the experimental manipula-
tion can be said to selectively impact the explicit, but not 
the implicit, memory system, the data are consistent with 
the multiple-system perspective. Thus, the computational 
and empirical approaches face the same uncertainties sur-
rounding parsimony. This difficulty illustrates the value of 
developing converging evidence for a single-system 
account based on work with different models and experi-
mental manipulations developed in different laboratories.

In the current work, we adopt A Theory of Nonanalytic 
Association (ATHENA; Chubala & Jamieson, 2013; 
Chubala, Johns, Jamieson, & Mewhort, 2016; Jamieson & 
Hauri, 2012; Jamieson & Mewhort, 2010) to examine the 
claim that empirical dissociations necessitate the multiple-
system perspective. ATHENA is based on the classic 
MINERVA2 model of memory (Hintzman, 1984, 1986, 
1988) but adopts holographic reduced representations to 
represent stimuli in memory (e.g., Jones & Mewhort, 
2007; Lewandowsky & Murdock, 1989; Murdock, 1983, 
1995; Plate, 1995).



Curtis and Jamieson	 3

Our work builds on Jamieson et al. (2010), who applied 
MINERVA2 to explain spared classification coupled with 
impaired recognition in artificial grammar learning (see 
Knowlton et al., 1992). Whereas Knowlton et al. argued 
that the dissociation of classification and recognition 
reflects selective impairment to an explicit memory sys-
tem, Jamieson et al. argued that the dissociation reflects a 
general deficit to memory for the studied exemplars. They 
tested the idea by simulating classification and recognition 
as a function of how accurately the exemplars were stored 
in memory. In addition to the computational argument, 
they also replicated Knowlton et al.’s experiment, simulat-
ing amnesic behaviour by manipulating how long each 
exemplar was studied.

In both cases, impairing memory for studied exemplars 
affected recognition but not classification, the same disso-
ciation shown by amnesic patients. Jamieson et al. (2010) 
concluded that the dissociation between classification and 
recognition is consistent with the perspective that amnesic 
patients’ memory of studied exemplars is poor relative to 
that of controls and, therefore, the data do not force the 
multiple-system conclusion.

In the work that follows, we borrow Jamieson et al.’s 
(2010; see also Graf et al., 1982; Higham et al., 2000; 
Kinder & Shanks, 2001; Nosofsky & Zaki, 1998; Woods 
& Percy, 1974; Zaki & Nosofsky, 2001) methods to 
argue two points. First, we will reproduce additional 
dissociations using both ATHENA and a manipulation 
of study time to better examine and evaluate those par-
ticular approaches. Second, and more importantly, we 
will present and discuss the computational and 

empirical simulations in relation to other accounts to 
contribute to the growing body of converging evidence 
in favour of the single-system perspective.

A Theory of Nonanalytic Association

Informally, ATHENA is a framework that describes the 
representation, storage, and retrieval of experiences. The 
model assumes that each experience is represented and 
stored in memory as a unique instance. When a cue is pre-
sented to memory, the model retrieves an aggregate of the 
instances that are similar to the cue. The match between 
the cue and the resulting aggregate can be used to index 
both classification and recognition.

Formally, each experience is stored into memory as a 
unique trace. When a probe is presented to memory, each 
trace is activated in parallel as a function of the similarity 
between the probe and trace. The activation from each 
trace is summed into a response profile known as the echo. 
The information in the echo is called its content. The 
strength of the echo’s activation is called its intensity.

Representation and storage

A stimulus is represented as a vector of n elements, where 
each element is randomly sampled from a Gaussian distri-
bution with a mean of zero and a standard deviation of 
1/ n . Association between multiple features of the same 
stimulus is represented using circular convolution, a vector 
operation that returns an associative representation 
between two argument vectors. More concretely, given 
two vectors, x and y, circular convolution produces a 
unique vector of the same dimensionality, z
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where x and y are item vectors, z is the association of x and 
y, and n is the dimensionality of x, y, and z. Figure 1 pre-
sents an example of the operation on two vectors with five 
elements. Note that the operation is only used if the stimu-
lus structure involves combining multiple stimulus fea-
tures into a single representation. We use the operation in 
Simulation 2 but not Simulation 1.

Encoding is assumed to be imperfect. To implement 
this idea, each stimulus is stored to a trace in memory with 
some degree of error as controlled by a parameter L that 
specifies the probability with which each element in a 
stimulus representation is stored to memory. If an element 
is not stored to memory, the element is encoded as a zero—
a method to represent missing information.2 Thus, as L 
increases from 0 to 1, the representation of a studied stimu-
lus in memory becomes increasingly complete. In the sim-
ulations that follow, this is the critical factor for simulating 

Figure 1.  A depiction of circular convolution. Multiplying x 
and y produces an n by n outer product matrix. The arrows 
demonstrate summation across elements to produce values in 
the resulting composite vector, z. The method can be thought 
of as a way to compress the associative outer product matrix z 
to the same dimensionality as the inputs, x and y.
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amnesia, where amnesic patients are assumed to have 
smaller values of L than controls. Importantly, the model 
assumes storage of studied items without any redundant 
secondary storage of implicit information.

Retrieval and decision

When a probe, p, is presented to memory, M, each trace is 
activated as a function of its similarity to the probe. 
Similarity, s, between a probe and a trace is given by

s
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where pj is the jth element of the probe, Mij is the jth ele-
ment of the ith trace.

The activation of each trace is a non-linear function of 
its similarity to the probe. Activation, a, is given by

a si i= 3

The purpose of the non-linearity is to exaggerate the role 
of similarity. Only very similar traces (i.e., with similarities 
near +1) make a strong contribution to activation; moder-
ately similar traces make an attenuated contribution, and 
weakly similar traces make almost no contribution at all.3

Once the probe has activated traces in memory, an echo is 
returned. The echo has two properties: content and intensity.

The echo content is a vector, c, with the same dimen-
sionality n as the traces in memory. It is a sum of the acti-
vated traces, where each trace contributes to the sum in 
proportion to its activation. The echo is computed as

c a Mj
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where ai is the activation of the ith trace and Mij is the jth 
element of the ith trace. The content of the echo is a vector 
containing the aggregated information from each of the 
activated traces.

Echo intensity, f, is the strength of activation elicited by 
the probe and is equal to the sum of the activation from 
each trace, thus

f a
i

m
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=
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1

where ai is the activation of the ith trace. However, an 
alternative index of the strength of the echo can be given 
by computing the cosine similarity between the echo con-
tent and the probe given by
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where cj is the jth element of the echo and pj is the jth ele-
ment of the probe.

We adopt the cosine similarity metric for two reasons. 
First, echo intensity sums across all traces. As a result, 
echo intensity varies as a function of the number of traces 
in memory. The variation in range makes interpretation of 
echo intensity difficult, especially when comparing across 
different study list lengths. In contrast, cosine similarity is 
bound to a range of −1 to +1, facilitating interpretation. In 
addition, cosine similarity is an established vector similar-
ity metric in a range of psychological application (e.g., 
Jones & Mewhort, 2007; Kwantes, 2005; Landauer & 
Dumais, 1997). In contrast, echo intensity is idiosyncratic 
to the model.

Finally, the probability of a response (e.g., endorsing an 
item as “studied”) is computed from the cosine similarities 
according to a standard logistic transformation

p response
e cos( ) =

+ − ( )+
1

1 α β

where cos is the cosine similarity, α is a free scaling param-
eter, and β is a free decision parameter. The logistic func-
tion is a well-established and commonly used method for 
deriving response probability from a raw signal (e.g., 
Dienes, 1992; Estes, Campbell, Hatsopoulos, & Hurwitz, 
1989; Gluck & Bower, 1988; McClelland & Elman, 1986; 
McClelland & Rumelhart, 1985).

Overview of simulations and 
experiments

Jamieson et al. (2010) applied MINERVA2 to explain the 
dissociation between classification and recognition in arti-
ficial grammar learning. We extend the account to two 
additional dissociations between classification and recog-
nition. First, we simulate and replicate a dissociation 
between classification and recognition of Posner-Keele 
dot patterns (Knowlton & Squire, 1993). Second, we simu-
late and replicate a dissociation between classification and 
recognition of binary-featured images (Reed, Squire, 
Patalano, Smith, & Jonides, 1999).

In total, the model has the following five parameters: 
the number of elements in each vector, L for controls, L for 
amnesic patients, the scaling parameter (α), and the deci-
sion parameter (β). We fixed the number of elements to 
100 in all simulations. We conducted simulations at a 
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range of values for L, but fixed the values used to simulate 
controls (L = .7) and amnesic patients (L = .2) to fit to the 
original experiments. The particular values were largely 
arbitrary, and the pattern of results does not change as long 
as the control and amnesic learning parameters are suffi-
ciently different and the amnesic learning parameter is not 
greater than the control parameter.

We allowed the scaling and decision parameters to vary 
freely across simulations. We allowed the decision param-
eter to vary freely across tasks but not between controls 
and amnesic patients. We did not allow the scaling param-
eter to vary across tasks or between controls and amnesic 
patients. Allowing the decision bias to vary while holding 
the scaling parameter constant is sensible for two reasons. 
First, rescaling cosine similarities represents a distortion of 
the principle basis for decision in the model. Thus, varying 
the scaling parameter within the same simulation could 
produce a distorted picture of the model’s performance. 
Second, varying the bias parameter between tasks is con-
sistent with empirical data that show participants adopt a 
more lax criterion during classification than recognition 
(e.g., Nosofsky, Little, & James, 2012; Nosofsky & Zaki, 
1998; Zaki & Nosofsky, 2001). It is also intuitive; classifi-
cation requires participants to judge whether a test item is 
similar to the studied items, whereas recognition requires 
participants to judge whether a test item is identical to a 
particular studied item (arguably a more stringent require-
ment). Because the decision parameter is allowed to vary 
across two conditions, the model has a total of six param-
eters, three of which were arbitrarily fixed (the number of 
vector elements, L for simulated controls, and L for simu-
lated amnesic patients) and three of which were free to 
vary (the scaling parameter, the decision parameter for 

recognition, and the decision parameter for classification). 
We selected the values of the free parameters that maxim-
ised the correlation between the simulated and empirical 
means.

Simulation 1

In a well-cited and important experiment, Knowlton and 
Squire (1993) had amnesic patients and controls study 
exemplar dot patterns derived from a prototype. The 
exemplar patterns were derived by allowing the dots in 
the prototype to move varying distances with varying 
probabilities. As the distances and probabilities increased, 
the exemplars became increasingly distorted (see Figure 2 
for examples).

In the classification experiment, participants studied 40 
high-distortion exemplars. Then, participants were tested 
for classification of 84 new patterns: the unstudied proto-
type (presented four times), 20 unstudied low-distortion 
exemplars, 20 unstudied high-distortion exemplars, and 40 
unstudied random patterns.

In a subsequent recognition experiment, the same par-
ticipants studied five unique exemplars, each generated 
from a unique prototype not seen in the classification task, 
eight times each (a detail that equated the number of study 
opportunities but not the number of unique exemplars in 
the preceding classification task). Then, participants were 
tested for recognition of the five studied exemplars relative 
to five unstudied exemplars derived from the same 
prototypes.

Figure 3 presents a reproduction of Knowlton and 
Squire’s (1993) results. As shown, amnesic patients and 
controls performed similarly in classification. Both groups 
endorsed the prototype more frequently than the low-dis-
tortion exemplars that they endorsed more frequently than 
the high-distortion exemplars that they endorsed more fre-
quently than the random patterns. However, controls out-
performed the amnesic patients at recognition. The 
dissociation was interpreted as evidence that memory is 
divided into separate systems—explicit memory (support-
ing recognition) and implicit memory (supporting classifi-
cation)—and that amnesia selectively impairs the explicit 
system.

In rebuttal, Nosofsky and Zaki (1998) examined the 
dissociation in the framework of the Generalised Context 
Model (GCM). The GCM is a similarity-driven model of 
categorisation. Nosofsky and Zaki had participants rate the 
similarities among Knowlton and Squire’s (1993) dot pat-
terns. The model uses those similarity ratings—raised to a 
sensitivity parameter, c—to evaluate test patterns in the 
classification and recognition tasks. The model was used 
to compute each test pattern’s similarity to the studied pat-
terns, which were then compared against a criterion to 
index the probability of endorsing the pattern as either 
category-belonging (in the case of classification) or 

Figure 2.  Examples of dot patterns used in the Posner-Keele 
task, taken from our Experiment 1.
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studied (in the case of recognition). Nosofsky and Zaki 
simulated amnesia by decreasing the sensitivity parameter 
(i.e., simulated amnesic patients had a smaller value of c 
relative to controls), successfully producing the dissocia-
tion and questioning the necessity of a distinction between 
explicit and implicit memory.

In Simulation 1, we analysed the same dissociation in 
ATHENA. Performance in ATHENA and the GCM are 
both based on inter-item similarity. However, the models 
calculate similarity differently. The GCM calculates simi-
larity either as distance in a multidimensional space or 
using people’s intuitive judgements of similarity between 
items. In either case, the similarity structure is static, 
remaining consistent across all instances of retrieval. 
ATHENA assumes representational qualities in the items 
and computes similarity based on those representational 
qualities at retrieval, individually for each probe. The simi-
larity structure is dynamic, changing at each instance of 
retrieval. We emphasise, however, that our intention is not 
to argue in favour of ATHENA over the GCM. Rather, our 
intention is to replicate the GCM’s success using alterna-
tive algorithms to highlight the shared principles rather 
than the particular differences within a more general and 
converging single-system argument.

Methods

To simulate the classification test, we generated a vector 
to stand for the prototype. The vector contained 100 ele-
ments with each element taking a random number sam-
pled from a Gaussian distribution with mean of zero and 
standard deviation of 1/ n . Once generated, we used 
the prototype to generate 40 high-level distortions of the 
prototype for the study list and 80 items for the test list: 
20 low-level distortions of the prototype, 20 unstudied 
high-level distortions of the prototype, and 40 random 

vectors corresponding to the randomly constructed 
unstudied test patterns. A prototype distortion was gener-
ated by copying the prototype and then flipping the sign 
of each element in the copy with probability d, where d = 
.15 for a low-distortion item and d = .25 for a high-distor-
tion item.4 The strategy is consistent with previous work 
that applied the model to category learning (e.g., Arndt & 
Hirshman, 1998; Hintzman, 1986). Next, we simulated 
study by storing all 40 of the study items to the memory 
matrix at learning rate L.

Next, we simulated classification by computing the 
echo for each of the 84 test items (i.e., four prototypes, 20 
low-level distortions, 20 high-level distortions, and 40 
novel patterns). Then, we computed the cosine similarity 
between the echo and the test item. Finally, we converted 
the cosine similarities into endorsement probabilities using 
the logistic function described above. Consistent with 
standard practice, we conducted 1,000 independent simu-
lations at each of 10 levels of L = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, and 1.0.

To simulate the recognition test, we generated a set 
of five random prototypes not used in the simulated 
classification task. We generated two exemplars from 
each prototype: one for the study list and one for the test 
list. We simulated study by storing the five items in the 
study list to a memory matrix eight times, each at learn-
ing rate L. Next, we simulated recognition by comput-
ing the echo for each of the 10 test patterns (i.e., all of 
the five studied and five unstudied patterns). Then, we 
computed the cosine similarity between the echo and 
test item. Finally, we computed endorsement probabili-
ties by converting the cosine similarity into response 
probabilities. As with the simulations of classification, 
we conducted 1,000 independent simulations at each of 
10 levels of L = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
and 1.0.

Figure 3.  Classification and recognition performance for amnesic patients and control participants, reproduced from Knowlton 
and Squire (1993). The left panel presents endorsement rates in the classification task. The right panel presents proportion correct 
in both tasks. Control participants are presented in white bars and amnesic patients are presented in grey bars.
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Results

The bottom panel in Figure 4 presents the results from the 
model where α = 3.4, β = 2.0,5 and where amnesic patients 
were simulated with L = 0.2, whereas controls were simu-
lated with L = 0.7. The left panel presents the model’s 
probability of endorsement on the classification task as a 
function of L (i.e., amnesic patients and controls) and 
probe type. The right panel shows overall performance in 
classification and recognition.

The model fits the empirical data very well. 
Classification performance shows the standard typicality 
gradient with little influence of a difference in learning 
rate. At both L = .2 and L = .7, the model endorsed the 
prototype most strongly followed by the low-distortion, 
high-distortion, then random test patterns. A comparison 
of simulated and empirical results (see Figure 3) shows a 
clear correspondence: the Pearson correlation between the 
two is equal to .94. More importantly, the model predicts 
the critical pattern of impairment. The change in L from .2 
to .7 had a smaller impact on classification performance 
than on recognition performance.

The top panel in Figure 4 shows how the model accom-
modates the pattern of results and illustrates the general 
argument across the full range of L. Increasing L results in 
improved discrimination on both the classification and 

recognition tasks. However, discrimination improves faster 
on recognition than on classification as a function of L. 
Thus, at any two values of L, the difference in discrimina-
tion will be smaller in classification than in recognition.

Discussion of Simulation 1

The simulation shows that ATHENA—an adaptation of a 
standard theory of memory that assumes memory for 
studied exemplars without implicit knowledge of an 
underlying prototype—accommodates the difference 
between classification and recognition. The model’s suc-
cess questions the necessity of a systems distinction and 
provides converging evidence on which to argue for the 
single-system perspective on memory. The analysis also 
shows that the differences in experimental procedure for 
measuring classification and recognition (e.g., discrimi-
nation of studied from unstudied exemplars versus unstud-
ied from unstudied exemplars) are far from inconsequential 
and, in fact, a consideration of those differences is impor-
tant for explaining the nature and form of selective impair-
ments. To further build on that point, we simulated the 
dissociation empirically. We replicated Knowlton and 
Squire (1993), simulating amnesic behaviour in healthy 
participants by presenting the studied exemplars very 
briefly.

Figure 4.  Simulation 1 endorsement rates and proportion correct on Knowlton and Squire’s (1993) classification and recognition 
tasks. The bottom left panel presents the model’s proportion of items endorsed in the classification task as a function of L and 
probe type. The bottom right panel presents proportion correct on both tasks as a function of L. The top panel presents the 
difference between cosine similarities for to-be-endorsed and to-be rejected items in both tasks as a function of L.
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Experiment 1

Experiment 1 provided a simulated replication of Knowlton 
and Squire (1993). In their experiment, amnesic patients 
and controls studied dot patterns derived from a prototype. 
Following study, they sorted new patterns based on cate-
gory membership. Subsequently, they sorted studied pat-
terns from unstudied patterns. We replicated their 
procedure using healthy participants. However, half the 
participants studied each item for 5,000 ms and half  
the participants studied each item for only 100 ms (i.e., the 
same technique used by Jamieson, Holmes, & Mewhort, 
2010). If a difference in encoding quality, as manipulated 
by study time, is sufficient to produce the results, classifi-
cation ought to be similar between groups but the control 
(5,000 ms) group ought to perform better on recognition.

Methods

Participants.  We recruited 80 participants from the Univer-
sity of Manitoba Introduction to Psychology participant 
pool. Participants were randomly assigned to four groups 
formed by crossing two factors: encoding time (5,000 ms, 
100 ms) and task (recognition, classification). All partici-
pants received credit towards a course requirement for 
participation.

Materials and apparatus.  The experiment was administered 
on eight personal computers. Each computer was equipped 
with a 22-inch monitor, a standard mouse, and a standard 
keyboard.

We constructed prototypes by randomly placing nine 
squares on a white, 420 × 420 pixel background. Each 
square was black, filled, and 6 pixels by 6 pixels. In the 
classification task, we generated one random prototype for 
each participant by placing the nine squares in random 
locations. Then, we derived exemplars using the statistical 
techniques described in Posner, Goldsmith, and Welton 
(1967). We generated 20 high-distortion study patterns. 
We also generated 20 low-distortion test patterns, 20 new 
high-distortion test patterns, and 40 random test patterns.

In the recognition task, we generated five prototypes 
for each participant. Next, we generated two high-distor-
tion exemplars from each prototype. One exemplar from 
each prototype served as a study pattern. The remaining 
patterns served as unstudied test patterns.

Procedure.  Participants sat at individual computers and 
were instructed that they would study patterns of dots for 
a memory test. Participants viewed the dot patterns one at 
a time in the centre of the screen. Participants in the con-
trol group viewed each pattern for 5,000 ms, consistent 
with Knowlton and Squire’s (1993) procedure. Partici-
pants in the simulated amnesia group viewed each pattern 
for 100 ms. The screen was cleared for 250 ms after each 

presentation. The classification group viewed 40 high-
distortion exemplars presented in random order. The rec-
ognition group viewed five high-distortion exemplars 
eight times each in pseudo-random order (i.e., in eight 
randomised blocks; the last pattern in a block could not be 
the first pattern in the next block).

Following study, participants in the classification group 
were informed that the studied patterns belong to the same 
category and that they were to sort new patterns based on 
category membership. Participants evaluated 84 test exem-
plars—the prototype (four times), 20 low-distortion test 
exemplars, 20 high-distortion test exemplars, and 40 ran-
dom test patterns—one at a time in pseudo-random order 
(the instances of the prototype could not appear on con-
secutive trials). The dot patterns were presented in the cen-
tre of the screen. Participants responded by clicking one of 
two alternatives labelled “Same category” and “Not same 
category” with the computer mouse. Once the participants 
had responded, the screen cleared for 250 ms and the next 
pattern appeared. This process repeated until the partici-
pants had provided a response to all 84 patterns.

The recognition group followed a similar procedure. 
The participants evaluated 10 patterns—five studied and 
five unstudied—in random order. Participants responded 
in the same way as the classification group, but the 
response alternatives were labelled “Old” and “New.” The 
screen cleared for 250 ms after the participants responded. 
This process repeated until the participants had provided a 
response to all 10 patterns.

Results

Figure 5 presents participants’ performance. The left panel 
presents the proportion of patterns endorsed as “Same cat-
egory” in the classification task. The right panel presents 
the proportion correct for both the classification and recog-
nition tasks. In classification, endorsing the prototype and 
the distortions was scored as correct and endorsing the ran-
dom patterns was scored as incorrect. In recognition, 
endorsing the studied patterns was scored as correct and 
endorsing the unstudied patterns was scored as incorrect.

In the classification task, participants showed a stand-
ard typicality gradient. They were most likely to endorse 
the prototype, followed by the low-distortion test exem-
plars, followed by the high-distortion test exemplars, fol-
lowed finally by the random test patterns. There was very 
little difference between the patterns of endorsement as a 
function of study time. The endorsement rates in our 
experiment are a close match to the rates in Knowlton and 
Squire’s (1993) experiment. For brevity, we do not report 
any formal analysis of performance on either the classifi-
cation or recognition task alone. Instead, we turn to the 
more crucial comparison between tasks.

The right panel of Figure 5 illustrates the key result. The 
left bars show that there is very little difference in the two 



Curtis and Jamieson	 9

study-time groups’ classification performance. In contrast, 
the right bars show that the 5,000 ms group performed rec-
ognition more accurately than the 100 ms group. This pat-
tern is the same critical pattern reported by Knowlton and 
Squire (1993). However, in contrast to Knowlton and 
Squire who observed the pattern as a function of amnesia, 
we observed the pattern as a function of study time.

To evaluate the data, we analysed the proportion of cor-
rect trials in a 2 × 2 between-subjects analysis of variance 
with study time (5,000 ms, 500 ms) and task (recognition, 
classification) as factors. Both main effects were signifi-
cant. Accuracy was superior following 5,000 ms of study 
time, F(1, 76) = 40.90, p < .001, and in the recognition task, 
F(1, 76) = 18.15, p < .001. More importantly, there was an 
interaction between encoding condition and task, F(1, 76) 
= 29.68, p < .001, such that the difference in accuracy was 
much greater in recognition than in classification.

There appears to be a bias to endorse all types of pat-
terns in the 5,000 ms encoding condition. This pattern is 
inconsistent with the patterns observed in previous experi-
ments as well as our Simulation 1. Statistically, a bias to 
endorse would be reflected by a main effect of encoding 
condition, which did not reach significance, F(1, 38) = 
3.985, p = .0531. However, the effect is very nearly signifi-
cant, and does suggest a potential response bias not 
observed in previous work. Nonetheless, the interaction 
pattern is the key observation. This pattern is a clear repli-
cation of the critical results reported by Knowlton and 
Squire (1993) and that they interpreted as evidence for a 
selective rather than a general memory impairment.

Discussion of Experiment 1

Experiment 1 provides a close match to the preceding sim-
ulation, suggesting that the pattern of impairments in clas-
sification and recognition in amnesia is consistent with 

what would be expected from a general rather than selec-
tive encoding deficit. The computational and empirical 
analyses approach the results from a common set of funda-
mental principles.

Knowlton and Squire’s (1993) results are only one 
example of a dissociation between recognition and classi-
fication observed in amnesia. If a single-system model is 
to be taken seriously, it ought to be able to account for a 
variety of dissociations across a variety of tasks. Jamieson 
et  al. (2010) applied the analysis to artificial grammar 
learning. We have applied the analysis to classification of 
Posner-Keele dot patterns. In the following, we apply the 
analysis to binary-featured line drawings. All of the origi-
nal experiments produce a dissociation between classifica-
tion and recognition. However, the category structures in 
the classification tasks differ in important ways. Categories 
in artificial grammar tasks are based on rules governing 
sequential dependencies. Categories in Knowlton and 
Squire’s (1993) experiment are based on derivation from a 
prototype pattern. In the following, categories are based on 
matching and mismatching features. Accounting for the 
dissociations in all three structures makes a stronger case 
than any independent demonstration.

Classification of binary-featured category items

Reed et al. (1999) tested amnesic patients’ and control par-
ticipants’ abilities to learn and categorise line drawings of 
animals. Each of the animals was composed of nine fea-
tures and each feature could take one of two values (see 
Figure 6 for examples). The similarity between any two 
animals can be measured by counting the number of 
matching versus mismatching features.

Despite a difference in materials, Reed et al. (1999) 
conducted an experiment that was very similar to the 
one conducted by Knowlton and Squire (1993). In the 

Figure 5.  Endorsement probabilities as a function of encoding condition for both tasks in Experiment 1. The left panel presents the 
proportion of patterns endorsed as “Same category” in classification. The right panel presents the proportion of correct trials for 
both classification and recognition. The error bars represent standard error.
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experiment, they constructed a prototype animal com-
posed of a randomly selected value for each of the nine 
features. Then, they used that prototype to construct 
exemplars of varying difference. At study, participants 
studied 20 low-distortion exemplars twice each: the 
exemplars differed from the prototype on either one or 
two features. Following study, participants were told 
that the animals belonged to a species called “Peggle” 
and were asked to sort unstudied Peggles from unstud-
ied non-Peggles. Participants classified unstudied 
drawings: the prototype, new low-distortion, moderate-
distortion exemplars that differed from the prototype 
by four or five features, high-distortion exemplars that 
differed from the prototype by seven or eight features, 
and the anti-prototype that differed on all nine features 
from the prototype.

Figure 7 presents a reproduction of Reed et al.’s (1999) 
results. The left panel presents endorsement rates on the 
classification task. The numbers on the x-axis indicate the 
number of features that matched those in the prototype. As 
shown, controls showed the standard typicality gradient. 
Participants were most likely to endorse the prototype, fol-
lowed by the low-distortion exemplars, followed by the 
moderate-distortion exemplars, followed by the high-dis-
tortion exemplars, followed by the anti-prototype. Amnesic 
patients showed a similar, albeit shallower, gradient rela-
tive to the controls.

Following the classification task, both groups were also 
given a cued-recall task. Participants were cued with the 
name of each feature (e.g., head, tail, feet) and asked to 
describe the two values of each feature. For example, if 
cued with “body markings,” a participant would receive 
one point for recalling “striped” or “spotted” and two 
points for recalling both.

The right panel of Figure 7 presents overall accuracy on 
the classification and the cued recall tasks. As shown, 
although the groups classified drawings similarly, the 
amnesic patients were less accurate on the cued recall task. 
The difference between classification and a cued-recall 
replicates the result from Knowlton and Squire (1993): 
amnesia affected participants’ performance in an explicit 
but not an implicit memory task.

Zaki and Nosofsky (2001) applied the GCM to Reed 
et al.’s (1999) classification task. The general principles of the 
model remained the same. The studied exemplars were stored 
to memory. At test, classification decisions were based on the 
global similarity between the probe and the exemplars.

The GCM fit the classification data well, producing a 
standard typicality gradient and little difference between 
simulated amnesic patients and simulated controls. The 
model’s success provides evidence that the single-system 

Figure 6.  Examples of animal line drawings from Reed, Squire, 
Patalano, Smith, and Jonides (1999). Animal a is the prototype, 
b is a low-distortion exemplar, c is a moderate-distortion 
exemplar, d is a high-distortion exemplar, and e is the anti-
prototype.

Figure 7.  Reproduced results from Reed, Squire, Patalano, Smith, and Jonides’s (1999) classification and cued recall tasks. The 
left panel presents endorsement rates in classification for control participants and amnesic patients as a function of the number of 
features matching the prototype. The right panel presents percent correct on the classification and cued recall tasks.
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perspective accommodates patterns of impairment previ-
ously thought to force a multiple-system account.

However, Zaki and Nosofsky (2001) did not simulate 
Reed et al.’s (1999) cued recall task. Their decision was 
likely due to the fact that the cued recall task is not well 
suited to a computational analysis. The GCM does not pos-
sess representations of heads or bodies and thus cannot 
answer questions about heads or bodies. Nonetheless, Zaki 
and Nosofsky’s analysis is incomplete.

In lieu of the cued recall task, Zaki and Nosofsky (2001) 
replicated Reed et al.’s (1999) classification task and a rec-
ognition task using healthy participants. They simulated 
amnesia by introducing a delay between study and test. 
Figure 8 presents a reproduction of their results. The left 
bars present accuracy on the classification task and the 
right bars present accuracy on the recognition task. As 
shown, there is little difference in classification, but the 
delayed group was less accurate in recognition. However, 
Zaki and Nosofsky did not model the data. The goal of 
Simulation 2 was to provide a full computational analysis 
of the combined results.

Simulation 2

We evaluated a single-system account of the difference 
between classification and recognition of binary-featured ani-
mal drawings in ATHENA. Similar to Zaki and Nosofsky 
(2001), we do not model Reed et al.’s (1999) cued-recall task. 
Instead, we model Zaki and Nosofsky’s recognition data. The 
model extends the GCM’s analysis by simulating the influ-
ence of L on both tasks, permitting a full analysis of the results.

Methods

To represent drawing features, we generated 18 random 
100 element vectors with each element taking a random 
number from a normal distribution with a mean of zero 

and a standard deviation of 1/ n . Each vector repre-
sented one of two values for each of the nine binary fea-
tures. We represented animal-drawings by taking the 
circular convolution of the vectors representing the rele-
vant features.6

For each simulation, we randomly selected values of 
each feature. The circular convolution of those vectors 
represented the prototype. We generated 20 low-distortion 
study exemplars by replacing either one or two of the pro-
totypical features. We stored each exemplar to a memory 
matrix twice each (i.e., to match the experimental details 
of Reed et al., 1999). We then generated 20 additional low-
distortion exemplars using the same methods to serve as 
test items. We generated 20 moderate-distortion exemplars 
by replacing either four or five of the prototypical features. 
We generated 20 high-distortion exemplars by replacing 
either seven or eight of the prototypical features. Finally, 
we generated an anti-prototype by replacing all nine of the 
prototypical features.

Next, to simulate classification, we computed the echo 
for each of the 96 test items (i.e., 12 prototypes, 20 low-level 
distortions, 20 moderate-level distortions, 20 high-level dis-
tortions, and 12 anti-prototypes). Then, we computed the 
cosine similarity between the echo and the test item. We 
converted the cosine similarities into response probabilities 
using the same logistic transformation as Simulation 1. We 
conducted 1,000 simulations at each of 10 levels of L = 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

To simulate the recognition test, we generated five 
study items and five unstudied items by convolving ran-
dom selections of features (i.e., there were no prototypes), 
consistent with Zaki and Nosofsky’s (2001) methods. We 
stored each study item to a memory matrix eight times 
each. Next, we simulated recognition by computing the 
echo for each of the 10 test items (i.e., all of the five stud-
ied and five unstudied items). Then, we computed the 
cosine similarity between echo and test item, and com-
puted recognition performance using the same logistic 
function as the classification task. We conducted 1,000 
simulations at each of 10 levels of L = 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

Results

Figure 9 presents the results from the model where α = 9.8, 
β = 5.0 for classification, and β = 9.3 for recognition. 
Consistent with previous work (e.g., Nosofsky & Zaki, 
1988; Nosofsky, Little, & James, 2012), the model adopted 
a lower decision criterion in classification than in recogni-
tion. Amnesic patients were simulated with L = 0.2, 
whereas controls were simulated with L = 0.7. The left 
panel presents the model’s endorsement probabilities in 
the classification task. The right panel presents the model’s 
performance on the classification and recognition tasks. 
The top panel inset presents the cosine differences for both 
tasks as a function of L.

Figure 8.  Reproduction of Zaki and Nosofsky (2001), 
presenting proportion of correct trials for classification and 
recognition after no delay and a week-long delay. No error 
bars were presented in the original article.
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The model fits the empirical data well. Classification 
performance shows the standard typicality gradient with 
little influence of a difference in learning rate. At both lev-
els of L, the model endorsed the prototype most strongly, 
followed by the low-distortion items, moderate-distortion 
items, high-level distortion items, and finally the anti-pro-
totype. More importantly, the model predicts the differ-
ence in impairment. The change in L had a smaller 
influence on classification performance (.11) than on rec-
ognition performance (.17). The model corresponds 
closely with the empirical means (r = .98). Although the 
dissociation is not as dramatic as in the empirical data, the 
model reliably produces the crucial qualitative pattern 
thought to support the multiple-system perspective.

Our implementation differs from Zaki and Nosofsky’s 
(2001) implementation in an important way. Zaki and 
Nosofsky assume that participants selectively attend to 
only a few of the binary features. Their model analysis 
supports this assumption, showing that allowing the model 
to attend to additional features does not result in a signifi-
cant improvement to performance. However, the assump-
tion has been debated.7 In addition, the assumption raises 
questions that are difficult to answer. For example, Zaki 
and Nosofsky state that attention to a limited number of 
features is sufficient to support classification but not rec-
ognition. However, given that learning in each task is 

incidental (i.e., participants are simply asked to attend to 
the stimuli), it is unclear why participants would attend to 
limited features in classification but all features in recogni-
tion. Our analysis demonstrates that the assumption, 
whether true or false, is not necessary to produce the quali-
tative pattern of the dissociation, albeit a less dramatic one.

In summary, the model accommodates a difference 
between classification and recognition that is consistent 
with the difference that Reed et al. (1999) reported between 
classification and cued-recall. Importantly, the results can 
be explained based on memory of just the studied exem-
plars and without recourse to a systems distinction. In con-
clusion, the differential pattern of impairment in 
classification and recognition might be consistent with a 
multiple-system account of memory, but it is also consist-
ent with a single-system account. To the extent that the 
data are consistent with both, the data cannot force a con-
clusion in favour of the multiple-system perspective.

Experiment 2

Experiment 2 provided a simulated replication of Reed 
et  al. (1999). In their experiment, amnesic patients and 
control participants studied line drawings of cartoon ani-
mals. Following study, they sorted new drawings based on 
category membership. Zaki and Nosofsky (2001) tested 

Figure 9.  Simulation 2 endorsement rates and proportion correct on Reed, Squire, Patalano, Smith, and Jonides’s (1999) 
classification task and Zaki and Nosofsky’s (2001) recognition task. The bottom left panel presents the model’s proportion of items 
endorsed in the classification task as a function of L and probe type. The bottom right panel presents proportion correct on both 
tasks as a function of L. The top panel presents the difference between cosine similarities for to-be-endorsed and to-be rejected 
items in both tasks as a function of L.
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participants in a recognition task with the same stimuli. We 
replicate the two sets of data, which form a selective 
impairment, using healthy participants by manipulating 
study time. However, because their stimulus set was not 
available, we instantiated the categories differently.

Methods

Participants.  We recruited 80 participants from the Univer-
sity of Manitoba Introduction to Psychology participant 
pool. Participants were randomly assigned to four groups 
formed by crossing two factors: encoding time (5,000 ms, 
100 ms) and task (recognition, classification). All partici-
pants were given credit towards a course requirement for 
participation.

Materials and apparatus.  The apparatus was identical to 
those in Experiment 1. All stimuli were patterns of shapes 
and colours consisting of nine features that could each take 
on one of two values. Table 1 presents the nine features 
and their possible values.

For the classification task, we constructed a prototype 
for each participant by combining the feature values for 
either column 2 or 3 of Table 1 (each for half of the partici-
pants in each group). We constructed an anti-prototype 
using the other set of values. We then constructed 80 more 
patterns. There were 20 low-distortion study exemplars 
and 20 low-distortion test items, which differed on either 
one or two randomly selected features. There were also 20 
neutral test items, which differed on either four or five fea-
tures, and 20 high-distortion test items, which differed on 
either seven of eight features. Figure 10 presents an exam-
ple from each category for a single participant.

We also constructed sets of random features for the rec-
ognition task. For each participant, we constructed 10 pat-
terns; five served as study patterns and five served as 
unstudied test patterns. This stimulus structure exactly 
matches Zaki and Nosofsky’s (2001) stimulus structure.

Procedure.  The procedure for Experiment 2 was very simi-
lar to that of Experiment 1. Participants sat at individual 

computers for a memory test. They viewed each of the 
study patterns one at a time in the centre of the screen. 
Participants in the control group viewed each pattern for 
5,000 ms, and participants in the simulated amnesia group 
viewed each pattern for 100 ms, each followed by a blank 
screen for 250 ms. The classification group viewed 20 
low-distortion study exemplars twice each in pseudo-ran-
dom order (i.e., two randomised blocks). The recognition 
group viewed five random study patterns eight times each 
in pseudo-random order (i.e., eight randomised blocks).

Following study, participants in the classification group 
were given the same instructions as in Experiment 1. 
Participants evaluated 96 test items—the prototype (12 
times), 20 low-distortion test items, 20 moderate-distor-
tion test items, 20 high-distortion test items, and the anti-
prototype (12 times)—one at a time in pseudo-random 
order (neither the prototype nor anti-prototype could 
appear on consecutive trials). The images were presented 
in the centre of the screen. Participants responded by click-
ing one of two alternatives labelled “Same category” and 
“Not same category.” Once the participants had responded, 
the screen cleared for 250 ms and the next image appeared. 
This process repeated until the participants had provided a 
response to all 96 patterns.

The recognition group followed a similar procedure. 
The participants evaluated 10 images—five studied and 
five unstudied—in random order. Participants responded 
in the same way as the classification group, but the 
response alternatives were labelled “Old” and “New.” The 
screen cleared for 250 ms after the participants responded. 
This process repeated until the participants had provided a 
response to all 10 images.

Results

Figure 11 presents participants’ performance. The left panel 
presents the proportion of images endorsed as “Same cate-
gory” in the classification task. The right panel presents 
proportion of trials correct in both tasks. In the classifica-
tion task, endorsing the prototype and the low-distortion 
test items was scored as correct and endorsing the 

Table 1.  The nine features and their possible binary values in Experiment 2. The first set of feature values were the prototypical 
values for half the participants and the second set of feature values were the prototypical values for half the participants.

Feature Value 1 Value 2

Outer Shape Square Circle
Outer Shape Colour Red Blue
Outer Shape Fill Filled Border Only
Inner Shape Triangle Diamond
Inner Shape Colour Green Yellow
Inner Shape Fill Filled Border Only
Symbol Star Sun
Symbol Location Right Left
Line Direction Bottom Left to Top Right Bottom Right to Top Left
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anti-prototype and the high-distortion test items was scored 
as incorrect. The moderate-distortion items were excluded 
from analysis, consistent with Reed et al.’s (1999) original 
method. In the recognition task, endorsing the studied items 
was scored as correct and endorsing the unstudied items 
was scored as incorrect.

The left panel of Figure 11 shows that participants, as in 
Experiment 1, endorsed stimuli following a standard typi-
cality gradient. The gradient is dramatic, ranging from 
nearly uniform endorsement of the prototype (.96) to 
nearly uniform rejection of the anti-prototype (.02). 
Between those extremes, participants were more likely to 
endorse patterns that differed from the prototype on fewer 
features. The endorsement rates differ very little as a func-
tion of study time.

The right panel of Figure 11 presents the crucial disso-
ciation. As in Experiment 1, there is little difference in 
classification performance as a function of study time. In 
contrast, the 5,000 ms group was better at the recognition 
task than the 100 ms group. This is the same pattern 
reported by Reed et al. (1999). However, we observed the 
pattern as a function of study time rather than amnesia.

To evaluate the data, we analysed the proportion of cor-
rect trials in a 2 × 2 between-subjects analysis of variance 
with study time (5,000 ms, 100 ms) and task (classifica-
tion, recognition) as factors. Both main effects were sig-
nificant. Participants in the 5,000 ms group were more 
accurate than participants in the 100 ms group, F(1, 76) = 
18.42, p < .001, and participants in the recognition group 
were more accurate than participants in the classification 
group, F(1, 76) = 62.70, p < .001. More importantly, there 
was an interaction between study time and task, F(1, 76) = 

5.53, p = .021, such that the difference in accuracy was 
smaller in classification (.05) than in recognition (.17). 
This pattern, although not of the same magnitude as 
Experiment 1, nevertheless provides another statistically 
unambiguous empirical pattern in which study time had a 
greater impact on recognition than on classification.

Discussion of Experiment 2

Using stimuli with the same category structure as the stim-
uli used by Reed et  al. (1999), Experiment 2 produced 
another empirical simulation of a pattern of selective 
impairment typically interpreted as evidence for multiple 
systems. The consistency between Experiments 1 and 2 is 
noteworthy. In both classification tasks, participants are 
required to respond to the structure of the category. In this 
case, decreasing encoding time only results in a small 
decrease in performance. However, in both recognition 
tasks, participants are required to respond to individual 
items. Because the category structure is orthogonal to the 
division between studied and unstudied items, the category 
structure does not provide any useful information. In this 
case, decreasing encoding time results in a large decrease 
in performance.

General discussion

By tradition, memory is conceived as a set of intercon-
nected parts with separate systems for implicit and explicit 
learning. Selective impairment of explicit relative to 
implicit learning following amnesia has served as princi-
pal evidence for the division where amnesia represents a 

Figure 10.  Examples of the binary-featured patterns used in Experiment 2.
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selective impairment of the explicit system (e.g., Schacter 
& Tulving, 1994).

In contrast to that tradition, a number of research labo-
ratories have argued that memory is singular and that dis-
sociations of performance in explicit and implicit tasks are 
consistent with that perspective. In the computational 
domain, Nosofsky and Zaki (1998; see also Zaki & 
Nosofsky, 2001) used the GCM to explain selective spar-
ing of classification coupled with recognition impairment 
in amnesia, Malmberg et al. (2004) made the same argu-
ment using the Retrieving Effectively from Memory 
(REM) model of memory, Higham et al. (2000) made the 
same argument using a principal component analysis 
(PCA) autoassociative neural network model, Jamieson 
et al. (2010) made a similar point using the MINERVA2 
model of memory, Benjamin (2010) made the same point 
in the Density of Representations Yields Age-Related 
Deficits (DRYAD) model, and Kinder and Shanks (2001, 
2003) made a similar point using a Simple Recurrent 
Network. Nosofsky, Little, and James (2012) reinforced 
the computational analysis with neuroimaging data (see 
also Gureckis, James, & Nosofsky, 2011). Cowell, Bussey, 
and Saksida (2010) made the same argument in the non-
human animal literature using a hierarchical neural net-
work model (the Extended Perceptual Mnemonic/Feature 
Conjunction [PMFC] model). In the empirical domain, 
Zaki (2004) presented a meta-analysis that contradicted 
conventional wisdom and revealed that classification is 
less affected but not completely spared in amnesia. Taken 
together, the database presents a growing body of converg-
ing computational, neuropsychological, and empirical evi-
dence that challenges the claim that a selective impairment 
in explicit memory performance in amnesia has the logical 
force needed to reject a single-system account.

Our analysis contributes to this growing body of converg-
ing evidence. Our computational analysis presents the 

theoretical argument. Our empirical analysis reinforces the 
case. Based on our results, it is clear that poor memory of 
studied exemplars begets poor recognition coupled with 
spared classification. The substantive argument about a sin-
gle-system account has been argued before. Our current 
investigation makes three primary contributions to that argu-
ment. First, our computational analysis solves criticisms that 
have been made against alternative single-system models 
such as the GCM, which has been criticised on the basis of 
its representational assumptions (e.g., Smith & Minda, 
2001).8 Second, our empirical analysis begins to clarify the 
relationship between encoding and interference in amnesia, a 
point we expand on below. Third and most importantly, we 
illustrate that a common conclusion can be drawn from mul-
tiple implementations of a more general set of principles, a 
point we discuss throughout the remaining section.

Our argument relies on parsimony and, although parsi-
mony can be a slippery concept in psychological science, 
it is clear to us that a single-system account is simpler than 
a multiple-system account: a multiple-system account that 
includes both an implicit and explicit system (and possibly 
others) is a superset of a theory that includes only the 
explicit system. Admittedly, absence of evidence is not 
evidence of absence. But, if a single-system theory is suf-
ficient to explain the data, a multiple-system theory repre-
sents an unnecessary and unmotivated expansion. But, 
how then does memory theory predict spared classification 
when memory for studied exemplars is poor?

Modern memory theories assume that retrieval is paral-
lel. In our theory, a probe activates all traces in memory 
and the information retrieved is a sum of the activated 
traces, where each trace contributes to the sum in propor-
tion to its activation. The failure to accomplish recognition 
given poor memory of studied exemplars is straightfor-
ward: if an item is stored poorly in memory, it is hard to 
determine whether the item was studied. The success of 

Figure 11.  Endorsement probabilities as a function of encoding condition for both tasks in Experiment 2. The left panel presents 
the proportion of patterns endorsed as “Same category” in classification. The right panel presents the proportion of patterns 
endorsed as “Old” in recognition.
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classification, however, requires consideration of parallel 
retrieval of poorly encoded category exemplars. Category 
exemplars share features with one another by virtue of 
belonging to the same category. Because the individual 
traces in memory share features and retrieval is parallel, a 
category probe retrieves the category members in memory 
and, by a process of redintegration, as represented in our 
model by summing over traces in the echo, reconstructs 
category-level information. The idea is consistent with 
constructive accounts of memory (see Arndt & Hirshman, 
1998, for a more complete discussion of false memory in 
exemplar models). In conclusion, assuming that amnesic 
patients remember studied exemplars worse than healthy 
controls and that retrieval from memory is parallel, one 
should expect spared classification in the face of compro-
mised recognition.

We are impressed by the growing body of converging 
evidence that data once thought to force a multiple-system 
conclusion is, in fact, consistent with a single-system 
explanation. However, a sceptic of the single-system per-
spective can point to the differences in the computational 
instantiations of the single-system approach: “Get the 
single-system theory’s house in order and then come back 
to the single- versus multiple-system debate.” There is 
wisdom in that rebuttal. But, it misses a larger point. The 
fact that so many different expressions of memory con-
verge on a common conclusion suggests that the single-
system perspective is not conditional on particular details 
of how the single-system theory is instantiated. For exam-
ple, our account assumes that amnesia can be understood 
as poor memory of studied exemplars (see also Benjamin, 
2010; Jamieson et al., 2010), Nosofsky and Zaki (1998; 
see also Zaki & Nosofsky, 2001) assume that amnesia can 
be understood as a relaxed retrieval gradient, Kinder and 
Shanks (2001, 2002) assume that amnesia can be under-
stand as slowed learning, Malmberg et al. (2004) assume 
that amnesia reflects inaccurate encoding of exemplars, 
and Cowell et al. (2010) assume amnesia reflects an ina-
bility to form complex feature conjunctions. Looking 
across the different accounts, the expression for memory 
differs. But, the underlying nature of the deficit is consist-
ent. Poor memory for a studied list (i.e., amnesia), inde-
pendent of how it is produced, impairs explicit performance 
more than implicit performance. It would be an error to 
focus on the differences between memory theories with-
out also focusing on the overwhelming similarities among 
the theories and the fact that they all arrive at the same 
conclusion.

Our experiments follow from a general strategy in pre-
vious work to examine the nature of deficits in amnesia. 
For example, Graf et  al. (1982) conducted experiments 
with healthy participants who studied training words 
deeply or shallowly. Their analysis confirmed the standard 
dissociation between explicit and implicit memory perfor-
mance. Participants who studied training words shallowly 

showed impaired recall but equivalent stem completion 
performance compared to participants who studied train-
ing words deeply. Based on the result, Graf et al. concluded 
that amnesia is a processing impairment—as if amnesic 
patients encode shallowly whereas healthy individuals 
encode deeply. Zaki and Nosofsky (2001) adopted the 
strategy to show that classification is spared and recogni-
tion is not after a long study-test delay (see also Nosofsky 
& Zaki, 1998; Woods & Percy, 1974). Our experiments 
use the strategy as well: participants studied items quickly 
or slowly (see Benjamin, Diaz, Matzen, & Johnson, 2012; 
Jamieson et al., 2010). As in other work, our manipulation 
produced the dissociation between performance on an 
explicit versus implicit memory task. Based on those 
results, we concluded that poor memory of studied exem-
plars is sufficient to produce the dissociation.

One might argue that poor encoding, as manipulated by 
short presentation time, is an inaccurate description of 
organic amnesia. For example, amnesic patients perform 
well if memory is tested immediately after the presentation 
of a single item (e.g., Mayes, Downes, Shoqeirat, Hall, & 
Sagar, 1993). Thus it appears that amnesic patients encode 
well but forget rapidly. Clearly, neither short presentation 
time nor delay between study and test are perfect descrip-
tions of amnesia. Nonetheless, Nosofsky and Zaki’s (1998) 
delay manipulation might at least be a better proxy for 
amnesia.

However, the delay interpretation of amnesia also has 
weaknesses. It seems unlikely that Nosofsky and Zaki’s 
(1998) delay manipulation caused forgetting by a passive 
decay mechanism—the concept has been famously cri-
tiqued in relation to long-term memory (McGeoch, 1932) 
and more recently in the context of sensory and working 
memory (see Nairne, 2003 for a review). It is more plausi-
ble that participants in their delay condition suffered from 
additional interference from the intervening events 
between study and test. To our knowledge, there are no 
empirical demonstrations that amnesic patients suffer from 
more interference per se. However, our manipulation and 
model analysis provide a potential explanation for why 
amnesic patients might suffer more severely from 
interference.

On average, when ATHENA’s vector representations 
are sparse (i.e., contain many zeroes), they are drawn 
closer to one another in geometric space (i.e., they are 
made less discriminable from one another). As a result, 
items in memory are made more similar and therefore they 
interfere more strongly with the retrieval of any particular 
item. Poor encoding results in greater interference during 
retrieval. Why, then, can amnesic patients remember very 
recent items? Our model analysis cannot provide an 
answer. However, distinctiveness-based models of mem-
ory (e.g., SIMPLE; Brown, Neath, & Chater, 2007) sug-
gest that recently encountered stimuli suffer far less 
interference. To be clear, we are generally agnostic about 
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whether amnesia is best described as poor encoding. 
However, it seems at least to be a plausible candidate 
explanation, and our analysis, in conjunction with princi-
ples from other models, aids in clarifying the relationship 
between encoding and interference. More importantly, and 
mirroring the critical conclusion we draw from our model 
analysis, the fact that many different manipulations pro-
duce the same pattern of results is the primary lesson.

Despite the success of our computational and empirical 
simulations, other data poses a unique challenge to our 
analysis and the analyses of others. For example, patient 
E.P. shows no ability to recognise above chance levels. 
Nonetheless, E.P. shows near-normal classification in the 
paradigms we have covered (Squire & Knowlton, 1995). 
The pattern is problematic for the exemplar framework. 
For example, in ATHENA, as L approaches zero, both rec-
ognition and classification performance must also 
approach zero.

However, previous work has provided explanations of 
E.P.’s highly selective impairment within an exemplar-
based framework. Palmeri and Flanery (1999) suggest that 
E.P.’s intact classification performance is the result of 
short-term memory acquired during the test phase. During 
a classification test phase, many of the patterns (i.e., all but 
the random lures) are similar. As a result, new test patterns 
can be compared against recently viewed test patterns, 
potentially permitting classification without any reference 
to exemplars from the study phase. In contrast, recognition 
test patterns are orthogonal and, as a result, recently 
viewed test patterns are not informative for subsequent 
recognition judgements.

Palmeri and Flanery (1999) tested this hypothesis by 
informing participants that study patterns had been pre-
sented subliminally—in reality, the participants had not 
been presented with any study patterns (i.e., a 0 ms encod-
ing condition). Participants, unsurprisingly, were unable to 
discriminate between “old” patterns and new patterns. 
However, participants were able to classify patterns at lev-
els consistent with previous experiments. Despite having 
no experience with the category exemplars, participants 
were able to use memory of the test phase to aid classifica-
tion. The result has been replicated and extended, with one 
participant showing uniform endorsement of the prototype 
despite no traditional study phase (Palmeri & Flanery, 
2002). In addition, Zaki and Nosofsky (2007) have demon-
strated that the structure of the patterns in the test phase is 
crucial, even causing participants to prefer high-distortion 
patterns over the prototype.

Our current analysis, like many exemplar-based mod-
els, makes a highly artificial distinction between the 
study and test phases. The model only stores new infor-
mation during the study phase and only evaluates pat-
terns during the test phase. However, previous exemplar 
models have been extended to allow for continued 
encoding and retrieval through the test phase of an 

experiment, including the GCM (see Zaki & Nosofsky, 
2007). A similar extension of ATHENA in which both 
encoding and retrieval occur in tandem seems straight-
forward. In fact, the MINERVA2 model has been 
extended in this way in order to account for phenomena 
in associative learning (MINERVA-AL; Jamieson, 
Crump, & Hannah, 2012; Jamieson, Hannah, & Crump, 
2010). Extending ATHENA to model interactive and 
ongoing retrieval/encoding effects is a meaningful point 
of future work.

The work presented here converges on a growing con-
sensus and counterargument about the nature of memory 
deficits in amnesia. Thus, our data make a meaningful con-
tribution on that point. However, we think the analysis 
points a more general issue that needs resolution.

The argument for a general account of memory is fun-
damental. Admittedly, the multiple-system perspec-
tive—to the extent that it is true—has advantages. If 
memory is composed of independent subsystems, the 
field is justified in developing different psychological 
theories for different behaviours. However, if memory is 
not composed of independent subsystems, the strategy is 
misguided: mistaking the number of tasks for the num-
ber of systems (Roediger, 1990). The problem comes 
down to a consideration of the relationship between lab-
oratory tests of memory and the systems that those tests 
are meant to measure: a logical error known as the pro-
cess-pure assumption.

According to the multiple-system perspective, each 
task (e.g., recognition and classification) measures a sys-
tem of memory. According to the single-system perspec-
tive, each task measures the behaviour of memory under 
different conditions. Consequently, the problem that is 
faced by the single-system perspective is to explain memo-
rial behaviour under different conditions holding princi-
ples and mechanisms of memory constant. Although the 
problem makes theory building difficult, the work pre-
sented here, as well as the work presented by others, points 
to the fact that the task of building a general approach to 
understanding memory is possible and that the field is 
making progress on that goal.

Of course, we are not the first to make this argument. 
Shanks and St. Johns (1994) and, more recently, Surprenant 
and Neath (2013) have called for a reunification of psy-
chological theory. However, Newell (1973) provided per-
haps the most famous argument for reunification. In his 
famous 20-questions paper, he argued that psychology has 
historically adopted a strategy of dividing behaviour into 
categories, labouring under the illusion that each division 
resolves one bit of uncertainty about psychology. He 
pointed out, however, that the strategy, albeit seductive, 
would lead the discipline into a study of phenomena and 
tasks rather than an explanation of behaviour. The lesson 
seems to have been largely ignored (e.g., see Jamieson, 
Mewhort, & Hockley, 2016).
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Our work, along with the converging evidence devel-
oped by Benjamin (2010), Higham et al. (2000), Jamieson, 
Holmes, and Mewhort (2010), Nosofsky and Zaki (1998), 
Zaki and Nosofsky (2001), Malmberg et  al. (2004), and 
Kinder and Shanks (2001, 2003) takes up Newell’s (1973) 
argument by challenging the popular distinction between 
explicit and implicit memory in favour of a principled and 
unified explanation of behaviour.
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Notes

1.	 Some multiple-system theories might be more constrained. 
For example, a multiple-system theory that assumes that 
classification is supported only by an implicit memory sys-
tem would be falsified by better classification performance 
by controls compared to amnesic patients.

2.	 Because the vector elements are sampled from a distribution 
with a mean of zero, it is possible that the element might 
have already been zero (or very close to zero). As a result, it 
is not always possible to distinguish between intact informa-
tion sampled at zero and missing information. Nonetheless, 
on average, low values of L result in traces missing larger 
amounts of information.

3.	 Mathematically, the activation of a trace is constrained to 
fall between −1 and +1. However, in practice, the lower limit 
of activation is typically approximately 0. This is because, 
in most implementations, lures (i.e., unstudied items, non-
category items) are orthogonal-by-expectation to each of the 
studied items.

4.	 This is an additional parameter in the simulation. Similar 
to L we chose the values relatively arbitrarily. The same 
pattern of results occurs so long as d is lower for the low-
distortion items.

5.	 Allowing β to vary across tasks did not result in a large 
improvement in fit.

6.	 In order to keep the length of the composite vector constant, 
we normalised it before adding each feature vector. If the 
length is allowed to increase with each new feature, the last 
feature vectors contribute more information to the composite.

7.	 Reed, Squire, Patalano, Smith, and Jonides (1999) demon-
strated that even the most frequently endorsed features were 
endorsed on fewer than 80% of trials. However, Zaki and 
Nosofsky responded convincingly by demonstrating that 
their model produces similar endorsement rates, even at the 
level of individual features.

8.	 To be clear, we disagree with Smith and Minda’s (2001) 
criticisms and refer the reader to Palmeri and Flanery (2002) 
for a rebuttal. Nonetheless, our analysis shows that the same 
dissociations can be produced under different representa-
tional assumptions.
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