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An Exemplar Model of Performance in the Artificial Grammar Task:
Holographic Representation

Randall K. Jamieson and Brian R. Hauri
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We apply a multitrace model of memory to explain performance in the artificial grammar task. The model
blends the convolution method for representation from Jones and Mewhort’s BEAGLE model (Jones,
M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite
holographic lexicon. Psychological Review, 114, 1-37) of semantic memory with the multitrace storage
and retrieval model from Hintzman’s MINERVA 2 model (Hintzman, D. L. (1986). “Schema abstrac-
tion” in a multiple-trace memory model. Psychological Review, 93, 411-428) of episodic memory. We
report an artificial grammar experiment, and we fit the model to those data at the level of individual items.
We argue that performance in the artificial grammar task is best understood as a process of retrospective

inference from memory.
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In an artificial grammar task, participants study letter strings
constructed according to the rules of an artificial grammar. After-
ward, they discriminate grammatical rule bound from ungrammat-
ical rule violating test strings. Typically, people can discriminate
the two classes of test items, but they cannot articulate the gram-
mar.

Three kinds of theories have been proposed to explain peoples’
performance. Abstractionist theories propose that participants in-
ternalize the grammar and, at test, endorse strings that match it.
When participants cannot articulate the grammar, grammatical
knowledge is diagnosed as implicit (e.g., Mathews et al., 1989;
Reber, 1967). Statistical theories propose that participants learn
stimulus regularities (e.g., bigram frequencies) and, at test, endorse
strings that exhibit the regularities. The statistical theories divide
on whether participants’ knowledge of statistical regularities is
implicit (e.g., Dulany, Carlson, & Dewey, 1984; Knowlton &
Squire, 1996; Perruchet & Pacteau, 1990; Servan-Schreiber &
Anderson, 1990). Exemplar theories propose that participants store
the training exemplars and, at test, endorse strings that remind
them of the studied exemplars. Because no implicit knowledge of
the grammar is assumed, the discrepancy between performance
and awareness of the grammar is irrelevant (e.g., Brooks, 1978;
Higham, 1997; Jamieson, Holmes, & Mewort, 2010; Jamieson &
Mewhort, 2009, 2010; Nosofsky & Zaki, 1998; Pothos & Bailey,
2000; Vokey & Brooks, 1992; Wright & Whittlesea, 1998).

Jamieson and Mewhort (2009, 2010) formalized the exemplar
account using Hintzman’s (1986) multitrace model of memory.
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According to the model, participants store studied exemplars in
memory. At test, a probe retrieves an aggregate of the stored
traces. Judgment of grammaticality is based on the match between
the probe and the retrieved aggregate. The model tracks judgment
of grammaticality and serves as proof of concept that performance
in the artificial grammar task can be understood as an example of
exemplar-based inference.

Despite the demonstrated capabilities of Jamieson and
Mewhort’s (2009, 2010) retrieval model—close fits to data from
experiments—it was limited by the constraints imposed by a naive
model for representation. To illustrate, a letter string ABCDEF is
represented by a vector composed of six successive subfields
a//bl/c//d//e//f, where // indicates concatenation. Although the
scheme maintained the spatial structure of the letter string, it was
wrong. It was wrong because it contradicted data that show people
do not remember a stimulus as a literal spatial object, but rather
remember it as encoded (e.g., Higham, 1997; Vokey & Brooks,
1992; Wright & Whittlesea, 1998).

The difference between a stimulus as presented and a stimulus
as encoded has been long appreciated. For example, Miller (1958),
who published the seminal study with the artificial grammar task,
argued that an account of recoding was central to explain the recall
benefit for grammatical over ungrammatical sequences. For exam-
ple, when presented with a string RGBYRGRBY, a participant can
recode the sequence as RGBY rwice—a recoding strategy that
halves the memory load of the original stimulus and thereby eases
the difficulty of recall.

Jamieson and Mewhort (2005) built on Miller’s (1958) position
and showed that grammatical sequences, on average, afford more
efficient recoding than do random sequences. Thus, an account of
recall that considers recoding can explain the well-documented
recall benefit for grammatical over random sequences.

Recoding is also observed in the judgment of grammaticality
task. For example, when presented with a letter string such as
RGBYBY, people tend to encode the string as a collection of
subunits, rather than as a whole (e.g., RG, BY, and BY, or RGB and
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YBY). Accordingly, it has been proposed that judgment of gram-
maticality reflects a comparison between the subunits in a test
string with subunits in the training set (e.g., Perruchet & Gallego,
1997; Perruchet & Pacteau, 1990).

To accommodate the empirical facts, Jamieson and Mewhort
(2011) proposed a representation scheme that allowed for chunk-
based encoding and that was based on the mathematics of holog-
raphy. Their method relied on Gabor’s (1968, 1969) insights that
a representation scheme based in vector convolution mimics a
hologram (see also Longuet-Higgins, 1968; Metcalfe-Eich, 1982;
Murdock, 1982, 1995; Poggio, 1973). To implement holographic
representation, Jamieson and Mewhort used Jones and Mewhort’s
(2007) noncommutative circular convolution (Plate, 1995). In the
model, each letter was represented by a unique vector. Each letter
string was represented by sampling subsequences from it. The
representation of an exemplar was formed by summing the subunit
vectors. Combined with the holographic representation scheme,
Jamieson and Mewhort’s model accommodated data from three
experiments that their retrieval model combined with concatenated
representation did not. They argued that, based on the difference,
holographic representation is a better method for capturing what
people notice and how they represent training and test strings in
memory. Jones and Mewhort used the operation to encode subse-
quences from linguistic input and, thereby, induce the semantic
and grammatical structure in a linguistic corpus. Jones and his
colleagues have extended the method to an examination of how
one might encode the details of word form (Cox, Kachergis,
Recchia, & Jones, 2011; see also Hannagan, Dupoux, &
Christophe, 2011). Others have used the method to model the
behavior of spiking neurons (Eliasmith, 2004).

Whereas Jamieson and Mewhort (2011) established the method
for holographic representation within a standard artificial grammar
task, their analysis was brief. Namely, they fit data to just a few
classes of items in just a few experiments. Thus, the generality of
their argument remains an open question.

Dienes (1992) has argued that a competent model ought to do
more than fit performance for classes of items. Namely, a compe-
tent model ought to also fit the pattern of performance over
individual test items. Dienes’ dictum is important because it calls
for a model of performance to predict decisions for stimuli rather
than decisions for stimulus properties. It is also important because
it forces an increasingly complete account of performance. In the
work that follows, we take up Dienes’ challenge and test the ability
of Jamieson and Mewhort’s (2011) model to predict performance
on individual items.

Experiment

We conducted a standard artificial grammar task using materials
like those from Reber’s (1967) classic study. In a training phase,
participants studied 20 training strings. At test, participants rated
the grammaticality of test strings using a slider. The slider was
marked Rule Violating at its extreme left, Unsure at its midpoint,
and Rule Conforming at its extreme right. For the analysis of
responses, the extreme left of the slider corresponded to a rating of
—100 and the extreme right corresponded to a rating of +100.

We anticipated a usual result: Participants will rate grammatical
test items as more grammatical than ungrammatical test items, but
they will claim ignorance of the grammar.

Method
Participants

A total of 52 students from the University of Manitoba under-
graduate participant pool took part in the study. All participants
reported normal or corrected-to-normal vision.

Apparatus

The experiment was administered on personal computers (PCs).
Each PC was equipped with a 21.5-in. wide-screen monitor, a
standard keyboard, and a standard mouse. Participants responded
using the mouse to click on words displayed on the monitor and
with the keyboard to report the rules of the grammar.

Materials

The stimulus materials were taken directly from Reber (1993, p.
36). The stimulus set included 20 grammatical training strings, 25
grammatical test strings, and 25 ungrammatical test strings. Six of
the 25 grammatical test strings appeared in both the training and
test lists; the remaining 19 grammatical test strings did not. A
string’s grammatical status was defined by its conformity to the
grammar in Figure 1. Any string that can be generated with the.
grammar is “grammatical.”” Any string that cannot be produced
with the grammar is “ungrammatical.” We used Reber’s materials
instead of generating our own to preempt criticism that we used
special items or that we engineered our stimuli to maximize model
fit. By Reber’s own definition, our materials are representative of
materials used in the artificial grammar task.

Procedure

Participants were tested in groups of three to seven.
After participants were seated at different computers, they were
told that they would be shown strings of letters and that they

Figure 1. Finite state grammar used to construct the materials. A gram-
matical stimulus is generated by starting at the leftmost node marked 1 and
following the paths through the diagram (indicated by arrows) until reach-
ing the rightmost node marked 6. When a path is taken the associated letter
is added to the end of the string. For example, moving from nodes 1 to 2,
2 to 3, and 3 to 6 produces the string TXS.
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should memorize them for a test. The participant initiated the
training phase by clicking on the message “Start” that was dis-
played at the center of the computer screen. After the participant
had clicked on the message, the screen was cleared for 750 ms.
Immediately thereafter, the first training string was displayed at the
center of the screen for 6 s. Next, the screen was cleared, and after
750 ms, the next string was displayed. The cycle repeated until all
of the training strings were presented.

Following the training phase, the participants were told that all
of the 20 strings that they had studied had been constructed
according to rules of an artificial grammar and that it was now
their task to rate the grammaticality of novel test strings. On each
test trial, a test string was presented at the center of the screen. A
line approximately 5 cm in length was displayed approximately 3
cm below the string: The line contained a slider positioned at its
center. The phrases “Rule Violating,” “Unsure,” and “Rule Con-
forming” were displayed at the left, center, and right of the line,
respectively. A button labeled “OK” was centered approximately 2
cm below the line.

At the start of each test trial, the slider was positioned at the
center (neutral point) of the line. To rate the grammaticality of
the test string, the participant used the computer mouse to position
the slider on the line and then clicked on the word OK. Immedi-
ately thereafter, the screen was cleared and, 1 s later, the next
string was displayed. If the participant did not move the slider from
the neutral position before clicking on the word OK, a message
instructed the participant that he or she must move the slider from
the neutral position in order to complete the trial. The cycle
continued until all of the test strings had been presented.

Although participants were not shown numbers on the slider, the
left extreme corresponded to a rating of —100, the right extreme
corresponded to a rating of + 100, and the midpoint of the line
corresponded to a rating of 0.

After the test strings had been presented, a text editor appeared
on the computer screen. A message above the text editor invited
the participant to describe the rules that were used to construct the
training strings. Participants provided their rule reports by using
the keyboard to type their responses into the text editor. When they
were finished, they clicked on a button marked OK.

Results and Discussion

Participants discriminated the grammatical (M = 18.97, SE =
2.63) from the ungrammatical (M = —9.72, SE = 2.39) test
strings, #51) = 11.50, d = 1.59, p < .05. However, none of the
participants articulated the rules of the grammar; indeed, most
declined to guess when pressed. The results are consistent with
standard results of artificial grammar experiments and with Re-
ber’s (1967) classic study using like materials.’

Table 1 shows the mean grammaticality ratings for all 50 of the
test strings; items 1 through 25 in Table 1 are grammatical and
items 26 through 50 are ungrammatical. Bolded items were pre-
sented at both training and test. The table indicates items with
mean ratings that differed reliably from zero, a = .05.

We note five aspects of the data in Table 1. First, there is a
spread in the ratings for items both between and within categories,
suggesting that participants judged test items based on factors
other than grammatical status. Second, ratings for only 31 of the 50
test items were reliably different from zero, a = .05, showing that

whereas participants agreed on the grammatical status of some
items, they disagreed on the grammatical status of others. Third,
although participants rated most test strings in agreement with
their true grammatical statuses, participants rated four test strings
in strong disagreement with their true grammatical statuses: items
11, 17, 40, and 48. Fourth, although participants rated all six test
strings that were presented at both training and test positively, they
did not rate the six studied items abnormally positively—a result
that is consistent with data published by Kinder and Shanks (2001,
see the bolded items in Table 1). Finally, we failed to detect that
the means in Table 1 were explainable by a simple decision rule or
idiosyncratic distortion (e.g., string length, inclusion/exclusion of a
single bigram or trigram such as TV, inclusion/exclusion of single-
letter recursions, or legality of first letter).

The data in Table 1 provide a valid database for evaluating
Jamieson and Mewhort’s (2011) holographic model of perfor-
mance in the artificial grammar task. First, the data were collected
using representative materials from a representative grammar
(Reber, 1993). Second, the data were collected using a simple and
theory-neutral study procedure (i.e., memorization). Third, perfor-
mance averaged over participants and within stimulus classes was
consistent with published data: participants discriminated gram-
matical from ungrammatical items but could not articulate the
grammar. Finally, the data are sufficiently resolved to enable an
item level analysis of performance.

We now outline Jamieson and Mewhort’s (2011) model and
then apply it to the design and materials from Experiment 1. If the
model is competent, it will discriminate grammatical from un-
grammatical test items as well as reproduce the profile of mean
ratings from Table 1.

Holographic Exemplar Model

The holographic exemplar model (HEM) merges the holo-
graphic representation model from Jones and Mewhort’s (2007)
BEAGLE with the storage and retrieval model in Hintzman’s
(1986) MINERVA 2.

Representation

In the HEM,, a letter is an n-dimensional vector. Each element in
a letter vector takes a value sampled from a normal distribution
with mean zero and variance 1/n. Letter strings are also repre-
sented as n-dimensional vectors, but they are formed by applying
noncommutative circular convolution to the letter vectors.

Circular convolution is a vector operation that encodes an as-
sociation between two vectors, x and y, to a new vector, z:

n—1
L= 2 Ximosn X Yi-pmeantfori = 0...n—1}, (1)
=0

! The overall pattern of performance in our experiment matched that in
Reber’s (1967). However Reber’s subjects discriminated grammatical from
ungrammatical test strings much better than did our subjects. The differ-
ence most likely reflects the fact that we presented each training string once
(and only briefly), whereas Reber presented items to subjects as many
times as they needed (and for long presentation) until they could report the
set. Another problem for direct comparison is that our materials are
representative of Reber’s materials—they are not the exact materials that
Reber used.
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Table 1
Mean Ratings of Grammaticality for Test Items

Grammaticality ratings

Item number Item M SE p < .05
1 PTTTTVPS —1.94 9.82
2 PVV 27.92 10.34 @
3 TXXTTVPS 44.17 7.18 #
4 TSXXTTVV 32.25 7.82 #
5 TSSXXTVV 38.80 8.26 #
6 TXS 29.12 10.10 @
7 TSXXVPS 41.85 7.44 @
8 PTTTVV —3.69 8.26
9 PTTVPS 36.94 7.94 #
10 TXXTTVV 21.15 8.59 #
11 PTTTTTVV —25.67 9.54 2
12 TSSXS 27.76 7.76 &
13 PVPXTTVV 8.31 8.57
14 PTTVPXVV 25.35 7.13 8
15 TSXXTVPS 31.28 8.78 “
16 TXXTVV 41.31 7.85 2
17 TSSSSXS —28.39 9.55 a
18 TPVV —10.88 8.02
19 PVPXTVPS 25.98 9.10 *
20 PVPXVV 25.67 8.09 *
21 PTVPXVPS 8.13 8.41
22 TXXVV 19.56 9.16 #
23 TSSXXVPS 38.65 8.15 b
24 TSXXVV 32.37 7.34 "
25 PVPS 4.17 9.43
26 PTTTVPVS 3.12 8.30
27 PVTVV 6.65 8.23
28 TSSXXVSS 12.40 8.16
29 TTVV -2.17 9.717
30 PTTPS -142 8.18
31 PVXPVXPX —44.38 7.73 8
32 XXSVT —38.20 6.57 a
33 TXXVX —9.08 8.11
34 PTTTVT -2.29 9.01
35 TXV —19.08 8.87 2
36 PSXS -6.23 8.42
37 PTVPPPS —18.37 7.65 #
38 TXVPS 3.08 8.41
39 SVPXTVV —28.90 7.11 #
40 TSXXPV 36.33 6.49 2
41 TXPV —13.31 8.20
42 TPTXS —30.54 7.51 ?
43 PTVPXVSP —18.10 8.76 #
44 SXXVPS -745 8.76
45 PVTTTVV 8.90 8.67
46 PTVVVV —36.00 8.41 #
47 VSTXVVS -27.62 7.18 @
48 TXXTVPT 22.76 8.94 #
49 PXPVXVTT —19.08 8.34 a
50 VPXTVV —14.33 7.86

Note. Items 1 through 25 are grammatical and items 26 through 50 are
ungrammatical. Items shown in bold served as both training and test items.
2 Items that had a mean rating that differed reliably from zero.

where the dimensionality of z is equal to the dimensionalities of x
and y. Figure 2 depicts the operation. Circular convolution is
commutative, distributes over addition, and preserves similarity.
Commutativity implies symmetric association so that the repre-
sentation of a bigram AB would be treated as equal to the repre-
sentation of a bigram BA. Because people encode letter strings
from left to right (i.e., AB # BA), circular convolution’s commu-

tative property is undesirable. To solve the issue, we use noncom-
mutative circular convolution. Noncommutative circular convolu-
tion is accomplished by scrambling the indices of the letter vectors
before applying circular convolution to them (Jones & Mewhort,
2007; Plate, 1995). Noncommutative circular convolution is nei-
ther commutative nor associative. However, it distributes over
addition and preserves similarity.

In the remainder of this article, we denote noncommutative
circular convolution using an asterisk (e.g., z = x"y). For brevity,
we use the term convolution in place of noncommutative circular
convolution.

The vector returned by convolution is unique from its constit-
uents. Thus, a*b and a”c are unique vectors (i.e., orthogonal in
expectation). Because we are using noncommutative convolution,
a"b and b*a are also unique. The uniqueness property extends to
all orders of convolution. For example, a is orthogonal in expec-
tation to a”b, which is orthogonal in expectation to a*b*c, and so
on.

To illustrate complete string encoding with convolution, con-
sider a string ABCD. First, we generate a vector for each letter,
A=aB=D>b,C =c¢ and D = d. Second, we encode the string
by summing it and all of its subunits to a single vector:a + b +
c+d+ab+b'c+c’d+ a’d’c+ b*c’d + a*b*c*d. Of course,
the example is extreme. People do not encode all information in a
string, nor do they encode the same information at different en-
counters with it (see Wright & Whittlesea, 1998). To acknowledge
these facts, we represent a letter string as a sum of g randomly
sampled units, where the unit sizes range from 1 to k. Thus, in our
simulations ABCD might be represented asa + b + a*b + b*c"d
at one encounter and b + ¢ + a*b + b*c"d at another, where g =
4 and k = 3. The method acknowledges encoding variability as
well as the fact that we cannot identify our participants’ private
recoding strategies.

x=[+1,+1, -1, -1, +1]
y=[+1-1,+1,-1,-1]
z=x*y=[-1,+3,-1,-1,-1]

Figure 2. 'The figure shows two vectors, x and y (both of dimensionality
n = 5). The outer-product of x and y is an n X n matrix. The arrows show
how the elements of the outer-product matrix are summed during circular
convolution to produce a summary vector z.
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Storage and Retrieval

The HEM'’s storage and retrieval operations follow from
Hintzman’s (1986) MINERVA 2 model of human memory. Thus,
memory in the HEM is an m by n matrix, M, where m is the
number of independent traces in the matrix and » is the number of
features in each trace. Imperfect encoding is simulated by resetting
a proportion of elements in M to zero (indicated data loss). The
amount of loss is controlled by a parameter L that specifies the
probability of storing a feature in memory correctly; thus, each
element in M has a probability of 1 — L of reverting to zero.

Retrieval follows a resonance metaphor. When a probe is pre-
sented to memory, it activates all traces in parallel. Each trace’s
activation is a nonlinear function of its match to the probe. In the
model, the activation of trace i, a,, is computed as

where p is the probe, M is memory, i indexes the 1 . . . m traces in
memory, and j indexes the 1 ... n elements in the probe and
memory matrix. The nonlinearity in retrieval is introduced by
raising the similarity metric (the term inside the brackets on the
right side of equation 2) by an odd numbered exponent. Because
the exponent is odd, the sign of the similarity metric is retained in
the transformation to activation.

The information that is retrieved from memory is a vector, c,
that is called the echo. The echo is a sum of the activated traces,
where each trace’s contribution to the sum is in proportion to its
activation by the probe. Thus, the echo is computed as

I
M

aXM;{forj=1...n} 3)
1

i

where c is the echo, q; is the activation of trace i, M is memory, i
indexes the 1. .. mrows (i.e., traces) in memory, and j indexes the
1 ... n columns (i.e., stimulus features) in both the echo and
memory matrix.

Judgment of grammaticality is predicted by echo intensity, I,
that indexes the match between the probe, p, and the echo, ¢:

4)

where j indexes the 1 . . . n columns (i.e., stimulus features) in both
the probe and the echo.

In summary, a representation of each studied trace is recorded to
memory—where the representation of a stimulus is a sum of g
randomly sampled subunits from sizes 1 ... k. At test, a probe
retrieves an aggregate of the studied traces (i.e., the echo) and

e

judgment of grammaticality is predicted by the probe’s match to
the echo.

Simulation

We applied the HEM to the materials and design of Experiment
1. Each simulation included four steps. First, a random vector was
generated for each unique letter in the training and test sets.
Second, a representation was developed for each item in the
training and test sets—different random representations were
formed for the two instances of each of the six grammatical items
that appeared first in the training phase and once again in the test
phase. Third, the representation of each training string was stored
to memory. Fourth, the echo intensity for each test item was
computed and recorded. We conducted 100 independent simula-
tions of the procedure from Experiment 1. Reported means are
averaged over the 100 independent simulations.

Like our participants, the model successfully discriminated the
grammaticality of test strings. The mean echo intensity for gram-
matical items (M = .595, SE = .002) was reliably greater than the
mean echo intensity of ungrammatical items (M = .561, SE =
.006). An independent samples 7 test confirmed that the difference
was reliable, 1(48) = 548, d = 1.67, p < .05. Critically, the model
achieved this level of performance without grammatical knowl-
edge.

Figure 3 shows the relationship between the mean echo inten-
sities (simulation) and mean ratings (data) over the 50 test items.
The correlation between the empirical and simulated estimates
over all 50 test items was high, n(48) = .68, p < .05. The
correlations for the grammatical and ungrammatical items were
also high when considered independently, n23) = .50 and .55,
respectively, both ps < .05. The model’s fit to participants’ judg-
ments over only those 31 items for which participants’ decisions
differed reliably from zero and was even higher than was the fit for
the total set of 50 items, n(48) = .78, p < .05.

Participants rated the six studied grammatical test items posi-
tively. However, they did not rate those items as abnormally

0.64 -
0.62- » 2
442925
0.60 4 ?ﬁi“aﬂ
g a2l 5O
éo.sa- 46 4 102 M8
E 39 18 4%3
£ 0561 43 33% 26,
1] 2 37
S 0.54- 47 35
2
=
0.524 32 04
0.50 4 31
60 40 20 0 20 40 60
Mean Grammaticality Rating

Figure 3. The model’s ratings plotted against peoples’ ratings of gram-
maticality for the 50 test items in Experiment 1. The model’s judgments are
expressed as mean echo intensity and peoples’ ratings are expressed as
mean rating of grammaticality. The parameters for the simulation were g =
3,k=3,and L = 0.7.

R —
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positive (i.e., relative to the other unstudied grammatical test
items). The model mimicked this aspect of participants’ judg-
ments: see items 2, 6, 15, 19, 20, and 23 in Figure 3. We conclude
that, like our participants, the model rated the studied grammatical
test items highly but did not recognize them.

Whereas participants’ ratings for most test items agreed with the
items’ true grammatical statuses, they rated items 11, 18, 40, and
48 in disagreement with their grammatical statuses. As shown in
Figure 3, the model tracked some of these details. The model rated
item 18 as the worst grammatical string and rated item 11 as the
third worst grammatical string. The model rated item 40 as the
second best ungrammatical string but rated several of the ungram-
matical items higher than item 48.

We conclude that the model does a good job of fitting peoples’
judgments for individual items in an artificial grammar task. The
pattern of ratings in Table 1 is consistent with an account of
performance that follows from memory-based inference about
grammatical status.

General Discussion

After studying grammatical training exemplars, participants can
discriminate grammatical from ungrammatical test items. Accord-
ing to an exemplar-based account of performance, judgment of
grammaticality is a retrospective inference from memory of items
in the training set. Test strings that resemble the training items are
classified as grammatical; test strings that differ from the training
items are classified as ungrammatical.

We have described a computational instantiation of the exem-
plar position. The model we have proposed blends the holographic
representation component from Jones and Mewhort’s (2007) se-
mantics model with the storage and retrieval components from
Hintzman’s (1986) MINERVA 2 model. In previous work we
showed that adding the holographic representation assumptions
helps the model to escape problems encountered by its previous
iteration. In the present work, we showed that the holographic
model does more than solve those problems: it fits performance for
individual items.

Noncommutative circular convolution is an excellent tool for
modelling learning in the artificial grammar task. First, it supports
encoding of short-range serial order information within strings,
without including knowledge of distant nonadjacent dependencies.
Thus, the representation technique makes is possible to separate
out the kinds of information that the model extracts from training
and test exemplars. Second, because noncommutative circular
convolution distributes over addition, information about short-
range dependencies can be superposed into a single memory trace
(i.e., the hologram). Thus, it is possible to encode items as sums of
subunits. Finally, the method has a long history in psychology and
so ties an explanation of performance in the artificial grammar task
to explanations of memory in general including recent work in
semantic representation (Cox et al., 2011; Eliasmith, 2004;
Hannagan et al., 2011; Jones & Mewhort, 2007; Murdock, 1982,
1995).

Because the HEM uses different representation assumptions
from the MINERVA 2 model, one might argue that we have
generated a new model. That conclusion would be largely wrong.
The two models are identical in terms of storage and retrieval. The
only difference in the two accounts is in the information that they

assume people notice in the training and test items. Jamieson and
Mewhort’s (2009, 2010) original adaptation of the MINERVA 2
model assumes that people notice the spatial relations between all
letters in a string. The holographic model, on the other hand,
assumes that people notice the short-range serial order information
in strings (i.e., single letters, bigrams, and trigrams). Whereas both
representations are valid—people can encode any of several kinds
of information in training and test strings—only the serial-order
representation in the convolution model agrees with standard em-
pirical facts. Participants favor regularities in adjacent elements
over regularities in nonadjacent elements (Kinder, 2010), and only
in special circumstances do participants learn nonadjacent depen-
dencies (see Johnstone & Shanks, 2001). Because the convolution-
based model agrees with empirical facts, we favor it.

Jamieson and Mewhort (2010, Table 8) presented item level
data from another artificial grammar experiment like the one
presented here. We fit the convolution model to those point esti-
mates and once again obtained strong fits. First, the mean echo
intensity for grammatical strings was greater than the mean echo
intensity for ungrammatical strings, thus confirming that the model
distinguishes grammatical from ungrammatical strings without
grammatical knowledge. More critically, the correlation between
the empirical and simulated estimates over the full set of 50 test
items was high, r(48) = .67, p < .05, as were the correlations for
the grammatical and ungrammatical items considered indepen-
dently, 7(23) = .52 and .51, respectively, both ps < .05. Although
the strong fits to those data do nothing more than reinforce our
conclusions, it is important to note that the model fits item level
data in more than one experiment. To our knowledge, no others
have published item level data. So, the data presented here, and the
data presented in Jamieson and Mewhort (2010), present the best
databases for model evaluation of item level predictions.

Our account denies that participants learn rules and regularities
in the training list. Nevertheless, the model discriminates gram-
matical from ungrammatical strings. What, then, enables the model
to behave as if it knows the grammar when it does not?

The HEM assumes that during retrieval, information in memory
is collapsed to an echo. Even with undifferentiated activation of
traces (i.e., where @, = 1 forall i = 1. .. m traces in memory), the
echo highlights commonalities in the studied exemplars. If traces
share a particular feature, then that feature will figure prominently
in the echo. However, because traces in memory are distributed
data structures, the echo will highlight many features. Thus,
whereas memory contains no information about rules and regular-
ities, the echo suffices.

To appreciate the behavior and flexibility of the echo, consider
the influence of differential activation in memory by a test probe.
Whereas memory might hold four items—M7RRV, MMRVV,
TPRXT, and TPXRT—it enables a great many more summaries of
structure in the items. For example, when presented with MTTRV
the echo will reflect traces one and two most strongly. When
presented with TXRTP, the echo will reflect traces three and four
most strongly. When presented with MTRXT, the echo will reflect
all four traces equally and generate a representation intermediate to
the echoes for MTTRV and TXRTP. In short, memory of training
exemplars carries no particular summary of structure in the train-
ing list but, rather, carries several potential responses specific to
how memory is queried. Understanding that memory does not
extract and store a particular abstraction over experience, but
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rather, holds items with the potential to do so at retrieval is key to
understanding how the HEM accounts for performance in the
artificial grammar task (see Vokey & Higham, 1999). Of course,
the position that knowledge emerges in retrieval even though that
knowledge is not represented directly in memory also explains
how people manage to judge the grammaticality of test items well,
even without an ability to express the grammar.

Memory-based accounts of performance, like the one presented
here, contrast with learning-based accounts. In a learning account,
participants prepare for the test by learning rules and regularities.
At test, performance is a reflection of success at learning (e.g.,
Knowlton & Squire, 1996; Reber, 1967). In a memory-based
account, participants store the training exemplars. At test, perfor-
mance reflects how the participants use memory of training items
to infer grammaticality. Both types of account explain judgment of
grammaticality. However, a learning account is forced to answer
questions that the memory account is not. Why do participants
learn rules and regularities that allow them to judge the grammati-
cality of test probes? How do they know which rules and regular-
ities to learn? If they know the rules and regularities, why can’t
they express that knowledge?

If one assumes that participants set out to learn rules and
regularities, much of the problem would appear to fade away
(although, Wright & Whittlesea, 1998, would ask how the subject
knows which rules and regularities are relevant). However, even if
this were the case, it would not benefit performance. In cases
where the experimenter tells participants to study training items in
preparation for a test of grammaticality, performance gets worse
rather than better (e.g., Reber, Kassin, Lewis, & Cantor, 1980).
Moreover, the assumption that participants learn the rules and
regularities contradicts the nature of the research problem. A
critical and defining feature of an implicit learning task is that the
experimenter withholds and even disguises the test—at least until
it is too late for the participant to engage in active and deliberate
learning. Thus, claiming that participants learn the structure of the
materials in anticipation of performing judgment of grammatical-
ity necessitates a claim for compulsive and obligatory learning of
rules and regularities in a training list. The memory approach
escapes the problem. Subjects learn the exemplars. At test, they
infer grammaticality by a test item’s similarity to the studied set.
The ability to discriminate grammatical status is an incidental
benefit.

Simon (1969) argued that sophisticated behavior could emerge
from unsophisticated systems when those systems are made to
operate in a complex environment (Morgan, 1903; Todd &
Gigerenzer, 2007). Accordingly, he warned psychologists to resist
attributing complex behaviour to complex mechanisms. Tero et al.
(2010) recently published a curious illustration of Simon’s posi-
tion. A slime mold (Physarum polycephalum) placed in a struc-
tured environment formed transport networks that rivaled human
engineered transport networks by measures of efficiency, fault
tolerance, and cost. In discussing the result, one might call the
slime mold sophisticated. However, analysis reveals that its be-
havior follows from the application of a simple foraging algorithm
to a complex environment (see Tero et al.’s model for a description
of the algorithm). We see peoples’ performance in the artificial
grammar as another illustration of Simon’s point. In discussing
peoples’ ability to discriminate grammatical from ungrammatical
items, one might be tempted to call the participant sophisticated.

However, analysis shows that the participant’s decisions are ex-
plicable by the operation of a basic mechanism operating in a
complex environment (see our model for a description of the
algorithm). Contrary to appearances, peoples’ solution to the arti-
ficial grammar task is more elegant than it is sophisticated.

Résumé

La recherche consistait 2 appliquer un modéle de mémoire a
multiples traces pour expliquer la performance durant une tiche de
grammaire artificielle. Le modele combine la méthode de convo-
lution pour la représentation, du modele BEAGLE, de Jones et
Mewhort de la mémoire sémantique (Jones, M. N., & Mewhort,
D. J. K. [2007]). Representing word meaning and order information
in a composite holographic lexicon. Psychological Review, 114,
1-37) et le modele d’encodage a multiples traces et de récupéra-
tion MINERVA 2, de D. L. Hintzman (1986. “Schema abstrac-
tion” in a multiple-trace memory model. Psychological Review,
93, 411-428) de la mémoire épisodique. L’article décrit une
expérience de grammaire artificielle dans le cadre de laquelle le
modele est appliqué aux données pour chacun des items. 1l est
avancé que la performance de la tiche de grammaire artificielle
s’explique le mieux en tant que processus d’inférences rétrospec-
tives a partir de la mémoire.

Mots-clés: modele de référence, représentation réduite ho-
lographique, grammaire artificielle, MINERVA 2.
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