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We present three artificial-grammar experiments. The first used position constraints, and the second

used sequential constraints. The third varied both the amount of training and the degree of sequential

constraint. Increasing both the amount of training and the redundancy of the grammar benefited par-
ticipants’ ability to infer grammatical status; nevertheless, they were unable to describe the grammar.
We applied a multitrace model of memory to the task. The model used a global measure of similarity
to assess the grammatical status of the probe and captured performance both in our experiments and in
three classic studies from the literature. The model shows that retrieval is sensitive to structure

in memory, even when individual exemplars are encoded sparsely. The work ties an understanding

of performance in the artificial-grammar task to the principles used to understand performance in

episodic-memory tasks.
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People become sensitive to the regularities in a
stimulus domain without deliberate effort and
without explicit awareness. As a result, several the-
orists have argued for a specialized learning system
that abstracts contingencies automatically and that
guides behaviour adaptively.

Reber (1967) was the first to discuss the idea
under the name implicit learning. His now classic
experiment involved two groups of participants
(see also Miller, 1958). Participants in a control
group learned strings of letters assembled at
random; participants in an experimental group

learned strings constructed according to the rules
of an artificial grammar. After they had learned
the strings, Reber informed the participants that
the strings had been constructed using rules and
invited them to sort new grammatical test strings
from ungrammatical ones. Participants from the
experimental group sorted the two classes of
stimuli better than the controls (achieving a score
of 69% correct). Although participants could sep-
arate grammatical from ungrammatical strings,
they could not explain the basis of their ability.
In particular, they could not articulate the rules
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of the grammar. Reber argued that participants’
ability to identify grammatical items reflected
knowledge of the grammar but that, because the
participants could not articulate the rules, the
knowledge must be implicit. Following Reber’s
demonstration, others have endorsed the idea
that participants abstract the grammar implicitly
(e.g., Dienes, Broadbent, & Berry, 1991,
Knowlton & Squire, 1992, 1993, 1994, 1996;
Kuhn & Dienes, 2005; Manza & Reber, 1997;
Mathews et al., 1989; McAndrews & Moscovitch,
1985; Reber, 1969, 1989, 1993; Rossnagel, 2001).
The position that an implicit system operates inde-
pendently of explicit intentional learning is known
as the two-systems view. The two-systems view is
attractive because it treats the artificial-grammar
task as a laboratory demonstration of how people
learn the rules of their native language without
explicit awareness or effort. In Reber’s (1967)
words, abstraction in the artificial-grammar task is
“a rudimentary inductive process that is intrinsic
in such phenomena as language learning and
pattern perception” (p. 863).

Despite its popularity, the idea of implicit
learning remains controversial. Three kinds of
argument have been marshalled against it. (a)
The evidence that subjects abstract and use a
grammar is almost always confounded with other
possibilities (see Shanks & St. John, 1994).
Instead of using the grammar, for example, partici-
pants might exploit information correlated with it,
such as the similarity of the novel test exemplars to
the known studied exemplars (e.g., Jamieson &
Mewhort, 2005). (b) The evidence that learning
is implicit—the fact that the participants cannot
articulate the rules—is almost always incomplete.
If their knowledge were probed appropriately, for
example, participants might be able to articulate
the grammar (e.g., Shanks & St. John, 1994,
1997). (c) The evidence for separate learning
systems does not have the logical force needed to
compel a two-systems view. Specifically, the dis-
sociation between performance and awareness
can be explained without invoking separate
implicit and explicit learning systems (Dunn &
Kirsner, 1988; Hintzman, 1990; Vokey &
Higham, 2005).

The arguments against the implicit-abstraction
idea have lead to alternative accounts of perform-
ance in the artificial-grammar paradigm. One pos-
ition, called the fragment view, proposes that
people parse the stimulus strings into grammatical
primitives (e.g., pairs and triplets of symbols)—
parsing is deliberate in some theories and auto-
matic in others—and keep track of each primitive’s
frequency in the training materials. At test, strings
that include a requisite number of the primitives,
especially the most frequently occurring primi-
tives, are judged to be grammatical (e.g.,
Johnstone &  Shanks, 2001; Perruchet &
Gallego, 1997; Perruchet & Pacteau, 1990;
Perruchet & Vintner, 2002; Servan-Schreiber &
Anderson, 1990). Thus, according to the fragment
view, it is not necessary to learn the grammar per
se; instead, participants keep track of grammatical
primitives. Nonetheless, both the parsing oper-
ation and the definition of a primitive remain con-
troversial. Some discuss parsing by analogy to a
process that extracts word units from continuous
speech (Perruchet & Pacton, 2005; Saffran,
2002). For others, parsing collapses to a count of
the frequency with which symbols co-occur
across training strings (e.g., Johnstone & Shanks,
2001; Knowlton & Squire, 1992, 1994
Perruchet & Pacteau, 1990).

A more extreme explanation for the artificial-
grammar task, called the exemplar view, proposes
that people infer the grammatical status of test
strings by comparing them to memory of the train-
ing strings (see Brooks, 1978; Brooks & Vokey,
1991; Vokey & Brooks, 1992, 1994; Whittlesea
& Dorken, 1993; Whittlesea & Wright, 1997
Wright & Whittlesea, 1998). Test strings that
are similar to the training exemplars are taken to
be grammatical; strings that are not similar to
the training exemplars are taken to be ungramma-
tical (see Pothos & Bailey, 2000, for an application
of Nosofsky’s, 1991, generalized context model to
the task). Because judgement of grammatical
status is based on the comparison of each test
string to memory, the exemplar view makes an
understanding of retrieval central to an under-
standing of performance in the artificial-
grammar task. A retrieval-driven explanation of
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grammaticality judgement stands in marked con-
trast to the prospective statistical-discovery
process associated with the two-systems view. To
date, however, there is little consensus about
how memory of training exemplars drives per-
formance in the artificial-grammar task. Further,
the idea that people retain a perfect copy of the
training exemplars seems to contradict the well-
established limitation of memory (e.g., Cowan,
1995; Miller, 1956).

Although the implicit-learning view focuses on
the distinction between performance and aware-
ness, both the fragment view and the exemplar
view sidestep the dissociation. Both deny that jud-
gements of grammatical status depend on knowl-
edge of the grammar, and if judgements of
grammatical status do not depend on knowledge
of the grammar, the dissociation presents no con-
tradiction for theory to explain.

The grammar abstraction, fragment discovery,
and exemplar-encoding views disagree about
what information people acquire from the training
exemplars. Because participants study the exem-
plars and not the grammar, however, all positions
must agree that, whatever information is acquired,
its source is the studied exemplars. At issue, then,
is whether memory of the exemplars is sufficient
to explain performance or whether extra
information—such as implicit knowledge of the
grammar or knowledge of statistical regularities
in training materials—is required to understand
judgements of grammatical status.

Because the exemplar-encoding view does
not assume implicit knowledge, it does not need
to postulate mechanisms to develop, store, or
deploy implicit knowledge. Because it does
not use a representation of aggregate structure in
the exemplars (i.e., the grammar), auxiliary to
memory for the exemplars themselves, the exem-
plar-encoding view is more economical than the
two-systems position (e.g., Nosofsky & Zaki,
1998; Vokey & Brooks, 1992; Zaki & Nosofsky,
2001). Neal and Hesketh (1997) have reviewed a
large body of work demonstrating a clear influence
of exemplar knowledge in the artificial-grammar
task. Jamieson and Mewhort (2005) provided

recent support for the exemplar view. They

INFERRING GRAMMATICALITY FROM SIMILARITY

quantified the structure in individual stimuli (a
measure called local redundancy) and the structure
in the grammatical rules from which the exemplars
were derived (a measure called grammatical redun-
dancy). The two kinds of redundancy are corre-
lated; redundancy increases with grammatical
redundancy. When separated experimentally,
however, performance was predicted by local
redundancy, not by grammatical redundancy.
The aim of the current work is to develop that
argument by describing a mechanism by which
probe—exemplar comparisons drive performance
in the artificial-grammar task.

The kind of grammar typically used in the arti-
ficial-grammar task is illustrated in Figure 1 (the
grammar is taken from Dienes et al., 1991).
Stimuli are generated by starting at the leftmost
node marked 1 and by following paths until reach-
ing an exit. When a path is taken, the associated
letter is added to the end of the string. For
example, moving from nodes 1 to 2, 2 to 2, and
2 to 3 produces the string MTV. Exemplars pro-
duced using the grammar in Figure 1 vary on a
number of dimensions including positional depen-
dencies (e.g., strings can begin with only one or
two symbols), sequential dependencies (e.g., each
letter can be followed by only one or two others),
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Figure 1. A finite-state grammar. Grammatical strings are
generated by entering the grammar at Node 1 (the leftmost node)
and following paths (indicated by arrows) until an exit path is
taken (the paths leading from Nodes 3, 5, and 6). When a path is
taken, the associated letter is added to the end of the string. This
grammar is taken from Dienes et al. (1991).

)
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string length, the frequency of repeated letters, and
so forth. Because there are so many potential influ-
ences on performance, it is difficult to assess what
information people use to judge a test string’s
grammatical status (see Johnstone & Shanks,
1999, for a clear review of the issue).

To model performance from experiments using
such a complicated grammar, we would have to
make a number of strong assumptions about the
importance of the various factors and how they
interact. For example, when a three-letter string is
compared against a six-letter string, should the
third letter of the three-letter string be compared
against the final letter or to the letter in the corre-
sponding position in the longer string? A model
might fail because we have made the wrong assump-
tions. Alternatively, a model might provide a good
fit to the data but the underlying account may
hinge on risky assumptions. Because of the difficul-
ties associated with such complex grammars, we
generated three new experiments using stimuli
that can be compared readily to each other. In
Experiment 1, we used stimuli with structure
defined by positional rules; such rules constrain
only what symbols can occur in each position of a
string. In Experiment 2, we used stimuli defined
by sequential rules; such rules constrain what
symbols follow one another in a string. In
Experiment 3, we used stimuli defined by sequential
rules and manipulated the amount of structure in the
grammar. After we have reported the experiments,
we will apply an exemplar-based theory of memory
to each and then extend the model to examples of
performance with traditional and more complex
grammars. We will use the simulation to show
that participants’ ability to judge the grammatical
status of test strings can be explained using prin-
ciples that have long been applied to episodic
memory.

EXPERIMENT 1: SENSITIVITY TO
POSITIONAL DEPENDENCIES

In Experiment 1, participants viewed 20 gramma-
tical training exemplars and were then asked to
judge the grammatical status of 96 novel strings

in a yes/no test procedure. To avoid contami-
nation from previous experience, we constructed
strings using nonalphanumeric symbols that par-
ticipants were unlikely to be familiar with. To
minimize the influence of any remaining idiosyn-
crasies in materials and to avoid item selection
effects, we constructed a different stimulus set for
each  participant  (see  Murdock, 19823
Redington & Chater, 1996). To avoid problems
of comparability that occur with a complex
grammar, we used a simple odd/even rule: Half
the symbols occurred only in odd serial positions,
and the other half only in even serial positions.
To make the strings more directly comparable,
we kept string length constant at four symbols.
Finally, we manipulated the difficulty of the
ungrammatical test items by varying the number
of violations of the grammar. If the simple odd-
even rule works like the complex grammar illus-
trated in Figure 1, participants should be able to
infer grammatical status at above-chance levels
without being able to articulate the simple genera-
tive rule. Finally, as the number of violations in a
string increases, the probability that participants
will endorse the string as grammatical should
decrease.

Method

Participants

A total of 10 students from the Queen’s University
undergraduate participant pool took part in the
study. All participants reported normal or
corrected-to-normal vision. Each participant was
tested individually.

Apparatus

The experiment was administered on a personal
computer equipped with a 17-inch monitor and
a standard mouse. Participants responded using
the mouse to click on words that were displayed
on the monitor. Stimulus strings were presented
using a black 24-point font. At a viewing distance
of 70 cm the visual angle of each symbol was
approximately 1.64°. The background of the

screen was light grey throughout the experiment.
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Stimuli

The symbols used to construct strings were
8, £, 22, ¥, MM, and 2. For each participant,
three of the symbols were assigned randomly to a
set labelled 4, the remaining symbols were
assigned to a set labelled B.

Each string comprised four symbols and was
constructed using an odd/even rule. According
to the rule, only symbols from Set A could
appear in Positions 1 and 3 of a string, and only
symbols from Set B could appear in Positions 2
and 4 of a string. Ungrammatical items were pro-
duced by assigning one or more symbols to a pos-
ition in a string in violation of the odd/even rule.

A unique stimulus set composed of 20 gramma-
tical training strings and 96 new test strings was
generated for each participant; 48 of the new test
strings were grammatical, and 48 were ungramma-
tical. The ungrammatical strings varied according
to the number of symbols that violated the odd/
even rule: a total of 12 strings had one violation,
12 had two, 12 had three, and 12 had four viola-
tions. The position(s) of violations within each
string was determined randomly. The test strings
were presented in a random order.

Procedure

Participants were seated in front of the computer
monitor. Before beginning the experiment
proper, participants were given a chance to
preview the six symbols. The participants were
told that they would be shown 20 strings, that
each comprised four symbols, and that their task
was to remember the strings.

The participant initiated the training phase of
the experiment by clicking on the message “I am
ready to begin” displayed at the centre of the com-
puter screen. The screen was cleared for 750 ms;
then, the first training string was displayed at
the centre of the screen. The string was displayed
for 5 s; after the display, the screen was cleared for
750 ms. The cycle repeated until all 20 training
strings had been presented. After all 20 strings
has been presented, the participant was told that
the strings had been constructed using rules, that
an upcoming test phase would involve new
strings, some constructed using the same rules

INFERRING GRAMMATICALITY FROM SIMILARITY

and some constructed without the rules. Finally,
the participant was given a new task—namely, to
decide whether or not each new test string con-
formed to the rules.

On each test trial, a string of four symbols was
presented at the centre of the screen, and the
words “Consistent” and “Inconsistent” were dis-
played below it. The participant responded by
clicking on the appropriate word. Once a response
had been recorded, the screen was cleared for
500 ms; then the next test string appeared. The
cycle continued until the participant had judged
each of the 96 test strings (48 grammatical and
48 ungrammatical strings).

Finally, the participant was asked to state the
rules that they thought had been used to construct
the training materials and to describe any strat-
egies that he or she used to judge the grammatical-
ity of test probes.

Results and discussion

Grammatical probes were judged by participants
to be consistent with the grammar 63% (SE =
2%) of the time; ungrammatical probes were
judged by participants to be consistent with the
grammar 48% (SE = 3%) of the time. By a
signal detection analysis, discrimination was
modest, &’ = 0.39 (SE = 0.1); however, a single-
sample # test confirmed that discrimination was
better than chance, £9) = 4.12, *> = .65, p <
.05. The detection theory analysis also revealed a
reliable bias on the part of participants to
respond “consistent” (C = — 0.15, SE = 0.04),
A9) = 3.90, n* = .63, p < .05.

The data indicate that the odd/even rule worked
much like the complex grammars illustrated in
Figure 1. Participants’ ability to infer the
grammatical status of the test probes is consistent
with levels of performance from previous exper-
iments using the judgement-of-grammaticality
task (e.g., Dienes et al., 1991; Reber, 1967).

Figure 2 (closed circles) presents the percen-
tages of test strings endorsed as grammatical as a
function of the number of rule violations in the
test strings. As is shown in the figure, the prob-
ability that an ungrammatical string would be
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Figure 2. Percentage of test strings endorsed as a function of the
number of rule violations in Experiment 1. Strings with no rule
violations were grammatical. Strings with 1 or more rule
violations were ungrammatical. Closed circles show observed
performance; open circles show simulated performance. Error bars
represent standard errors. Parameters: n = 20, L=.2k=.39

endorsed as grammatical decreased linearly with
the number of violations of the odd/even rule,
F(4, 36) = 5.33, MSE = 208.27, n* = .37, p <
.05; the linear trend accounted for a majority of
the variance, F(1, 9) = 13.38, MSE = 323.97,
7’ = .60, p < .05.

Although the odd/even rule defines gramma-
ticality by position, many of the resulting strings
could have been classified on the basis of sequen-
tial dependencies: In grammatical strings, a char-
acter from Set A is followed always by a
character from Set B and vice versa. Hence,
the fact that performance is above chance does
not indicate whether participants are sensitive
to positional constraints or sequential constraints.
The data for the ungrammatical strings disam-

biguate the question. The case of a BABA

string contains four violations by a positional
analysis but no violations to a sequential analysis.
Because the four violation cases were rejected
most easily, we infer that the participants were
sensitive to the positional information. This
inference should be interpreted with caution,
however, because participants may have rejected
strings with four violations because they had
learned which symbols began and ended
strings. In this case, the four violation cases
would have contained two bigram violations in
salient positions.

All of our participants expressed frustration
when asked to articulate the rules used to con-
struct the training items. When pressed, they
reported selecting the string that “reminded
them of” or that “looked most like” the training
items. That is, they claimed that they relied on a
test string’s resemblance to the training materials
in order to judge its grammaticality. When
asked, none of our participants claimed to clas-
sify test strings according to positional or
sequential dependencies of symbols in the train-
ing materials.

The results replicate the defining features from
previous studies of the artificial-grammar task.
The participants judged the grammatical status
of test strings without being able to describe the
rules, and judgements of grammatical status
depended on the number of rule violations.

Although we replicated the standard results,
the odd/even rule is not typical of grammars
used in previous artificial-grammar experiments.
Because strings were only four characters in
length, the rule constrained severely the set of
possible stimuli: Only 81 different grammatical
strings of length four can be generated with
the rule. Clearly, then, the grammar does not
mimic the complexity of the grammars used in
most studies using an artificial grammar.
Secondly, finite-state grammars, like the
grammar in Figure 1, emphasize sequential
over positional dependencies. Because the first
experiment used an atypical grammar, in
Experiment 2 we used a grammar based on
sequential dependencies that were uncontami-
nated by positional dependencies.
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EXPERIMENT 2: SENSITIVITY TO
SEQUENTIAL DEPENDENCIES

In Experiment 2, the symbols used to construct the
strings were the digits 1 through 8. Unlike
Experiment 1, all eight symbols were equally likely
to appear as the first digit in a string. The
grammar defined which digit could follow each
other digit. That is, the grammar imposed sequential
constraints on the strings without imposing a priori
positional constraints. We used unfamiliar symbols
to construct strings in the first experiment; in the
second, we used familiar symbols (i.e., digits) and
asked the participants to read the digits in a string
aloud, from left to right. Reading the digits from
left to right ensured that participants had ample
opportunity to notice the sequential dependencies.
The manipulation also exercised a degree of exper-
imental control over encoding, a factor known to
affect performance (Vokey & Brooks, 1992).
Participants studied 20 grammatical strings.
Each string was composed of eight digits. After
training, participants were informed that the
strings had been constructed using rules and then
were invited to sort novel grammatical from
ungrammatical strings in a two-alternative
forced-choice test. We used a two-alternative
forced-choice test to remove distortions in per-
formance from a bias in participants’ predilection
to respond yes or no more often in the yes/no pro-
cedure from Experiment 1 (see McAndrews &
Moscovitch, 1985, for a discussion of the benefits
of using a two-alternative forced-choice test).

INFERRING GRAMMATICALITY FROM SIMILARITY

Each foil included at least one, and up to seven,
violations of the grammatical rules. Thus, as in
Experiment 1, we can examine performance as a
function of the number of violations of the
grammar. After the test, participants were asked
to describe the rules that they believed were used
to generate the training strings.

Method

Participants

A total of 10 students from the Queen’s University
psychology undergraduate participant pool partici-
pated in the study. All participants reported
normal  or  corrected-to-normal  vision.
Participants were tested individually.

Stimuli
Stimuli were strings of eight digits. Only the digits
1 through 8 were used. The sequential rules con-
strained which digits could and which digits
could not follow one another in successive serial
positions. Table 1 illustrates the rules. The table
gives the probabilities with which the digits 1
through 8 could follow one another in successive
serial positions of a string. For example, when
the digit 1 appeared at any position in a string,
the digits 3, 5, 6, or 8 could follow, each with a
probability of .25, but digits 1, 2, 4, or 7 could
not occur.

Table 1 illustrates the rules in terms of how
each digit can succeed one another. The same
basic constraint was used for each participant,

Table 1. The grammar used to construct strings in Experiment 2

Digit at serial position n + 1

Digit at serial

position n 1 2 3 4 5 6 7 8
1 0 0 1/4 0 1/4 1/4 0 1/4
2 1/4 0 0 1/4 0 0 1/4 1/4
3 0 1/4 0 1/4 1/4 0 1/4 0
4 1/4 0 1/4 0 0 1/4 0 1/4
5 0 1/4 0 1/4 0 1/4 1/4 0
6 1/4 0 1/4 0 1/4 0 0 1/4
7 1/4 1/4 1/4 0 0 1/4 0 0
8 0 1/4 0 1/4 1/4 0 1/4 0
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but to guard against idiosyncratic digit pairings
in strings (e.g., famous years or dependencies
consistent with an odd/even dependency) each
participant’s grammar was determined by ran-
domly reassigning digits to the row and
column headings, subject to the constraints
that (a) each digit could follow four other
digits and could be followed by four other
digits, and (b) digits could not follow them-
selves. As a result, each participant studied
strings generated with a unique grammar that
preserved the amount of constraint illustrated
in Table 1.

The stimulus set constructed for each partici-
pant included 20 grammatical training strings, 50
novel grammatical test strings, and 50 ungramma-
tical test strings. Grammatical strings were con-
structed by selecting a digit at random for the
first position in the string. Subsequent digits
were added in accordance with the rules in the
grammar until eight digits had been chosen.
Ungrammatical strings were constructed by
assigning a digit to each serial position of a
string randomly, subject to the constraint that a
digit could not follow itself. If the string contained
at least one illegal bigram (i.e., if it included at
least one pair of digits that violated the rules), it
was used; otherwise, it was discarded. Sampling
ungrammatical strings at random produced an
uneven distribution: Participants were tested
with a mean of 4.7, 10.6, 14.8, 10.6, 5.8, 2.8,
and 0.7 strings with 1, 2, 3, 4, 5, 6, and 7 viola-
tions, respectively.

Apparatus
The apparatus was the same as that in Experiment 1.

Procedure

The experimenter instructed participants that they
would be asked to read aloud strings of eight digits
one digit at a time from left to right, that only the
digits 1 through 8 would be used, and that
each string would be presented individually for
10s. The procedure differed from that in
Experiment 1: We did not show participants the
symbols used to construct strings (because

participants were already familiar with digits 1
through 8).

The participant initiated the training phase of
the experiment by clicking on the word “Study”
displayed at the centre of the computer screen.
The screen was cleared, and, after 750 ms, a
string of eight digits was displayed at the centre
of the screen. The participant read the string
aloud. After 10 s of study time, the screen was
cleared. After a 750-ms pause, the next string
was displayed. Training continued until all 20 of
the training strings had been presented.

After all the training strings had been pre-
sented, each participant was told that the strings
had been constructed using rules and that they
would be shown pairs of strings that they had
not seen at study. Only one member of each pair
conformed to the rules. Their task was to select
the string that conformed to the rules used to con-
struct the training items.

On each test trial, two unstudied strings, one
grammatical and one ungrammatical,
displayed on the centre row of the computer
screen. The position of the grammatical string
(left versus right side) was determined randomly.
The participant responded by clicking on the
string that they thought was grammatical.
As soon as a string had been selected, the
screen was cleared. After a 500-ms pause, the
next pair of test strings was presented. Testing
continued until all 50 pairs of test strings had
been presented, and the participant had selected
one string from each pair. After completing the
task, each participant was asked to describe the
rules that had been used to construct the training
strings.

‘were

Results and discussion

Participants selected grammatical test strings on
57% (SE = 1%) of the test trials. Although per-
formance was only 7% better than chance, a one-
sample 7 test confirmed that performance was
reliably better than chance, A9) = 6.70, p < .05;
the corresponding measure of effect size indicated
that the difference was large, n* = .83. The reliable
7% advantage over chance is consistent both with
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the level of performance in Experiment 1 and with
performance in other judgement-of-grammatical-
ity experiments from the literature (e.g., Dienes,
1992; Reber, 1967).

Figure 3 (closed circles) shows the percentage
of correct decisions as a function of the number
of rule violations. The degree of variation in
the size of the standard errors in Figure 3
reflects differences in the number of test trials
on which participants were presented an
ungrammatical string with 1, 2, 3, 4, 5, 6, and
7 rule violations. The relation between perform-
ance and number of rule violations in the current
experiment (Figure 3) is consistent with the
relation observed in Experiment 1 (Figure 2):
Judgement of grammatical status improved
with the number of violations in the ungramma-
tical alternative.
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Figure 3. Percentage correct in Experiment 2 as a function of
number of rule violations in the ungrammatical alternative.
Closed circles show observed performance; open circles show
simulated performance. Error bars represent standard errors.
Parameters: n = 20, L. = .55.

INFERRING GRAMMATICALITY FROM SIMILARITY

All 10 of our participants were unable to
articulate the structure of the training materials.
None of our participants felt they could provide
a rule that would help a yoked participant
judge the grammaticality of the test strings they
had just viewed. When pressed, participants
said they relied on their “gut feeling”; none
described specific sequential dependencies or
fragments (i.e., groupings of digits) that they
might have treated as grammatical primitives. A
total of 8 of the 10 participants expressed
doubt that the training materials were con-
structed using rules, thinking that deception
was part of the procedure.

The experiment replicates the classic results
from earlier experiments using the judgement-
of-grammaticality procedure: Participants inferred
the grammatical status even though they were
unable to report the rules of the grammar.
Whereas in Experiment 1 participants were sensi-
tive to positional constraint of symbols, in
Experiment 2 they were sensitive to sequential
constraint of symbols.

EXPERIMENT 3: AMOUNT OF
STRUCTURE

In both Experiments 1 and 2, performance varied
with the number of grammar violations. However,
a count of violations is a primitive measure of
structure, and it is theoretically loaded. In
Experiment 3, we used the measure of grammati-
cal structure developed by Jamieson and Mewhort
(2005) to manipulate the amount of constraint in
the grammars that were used to generate study
strings. In addition, we manipulated the number
of training exemplars, either 20 or 40 digit
strings. Both factors manipulate the information
available for learning and so provide better
grounds on which to analyse learning. The pro-
cedure was identical to that from Experiment 2:
After reading the training strings, the participants
were told that the strings had been constructed
using rules and were invited to discriminate
novel grammatical probes from ungrammatical

probes.
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Method

Participants

A total of 56 students from the McMaster
Psychology undergraduate participant pool took
part in the study as part of a course requirement.
Participants were assigned to one of eight exper-
imental conditions defined by the factorial combi-
nation of amount of structure and the number of
exemplars presented in training. All participants
reported normal or corrected-to-normal vision;
participants were tested individually.

Apparatus
The apparatus was the same as that used in the
previous experiments.

Stimuli
Stimuli were strings of eight digits. Only the digits
1 through 8 were used.

Four grammars that differed in grammatical
redundancy were used to construct the stimuli. In
the least constrained condition, each digit could
be followed by six other digits with equal likeli-
hood—that is, p = 1/6. The next condition was
the same as Experiment 2: Each digit could be fol-
lowed only by four other digits with equal likeli-
hood—that is, p = 1/4. In the next condition,
each digit could be followed only by three other
digits, again with equal likelihood—that is,
p = 1/3. Finally, in the most heavily constrained
grammar, each digit could be followed only by
two other digits with equal likelihood—that is,
p = 1/2. The amount of structure associated with
each grammar was quantified using the redundancy
statistic, G (see Jamieson & Mewhort, 2005).
Redundancy is computed using Shannon and
Weaver’s (1949) expression for uncertainty:

U==> "> p; log, pij»

=1 j=1

where p;; denotes the probability of symbol ; fol-
lowing symbol 7 in a sequence, and 7 is the
number of symbols in the grammar. We compute
the grammatical redundancy of a target grammar

by comparing its uncertainty, U(Grammar),
against the uncertainty in an equivalent but uncon-
strained grammar, U(Unconstrained):

U(Grammar)
U(Unconstrained)

G=1

where G measures the amount of bigram structure
associated with a grammar. Using Table 1 as an
example, an unconstrained grammar would allow
each symbol to follow each other symbol equally
often (each entry in the table would be 1/8).
Moving from the least to the most constrained
grammars used in the current experiment, G =
.14, .33, .47, and .67.

As in Experiment 2, to construct a lure, digits
were selected for each position of a string at
random, and the string was evaluated as to
whether it violated the rules of the grammar.
The probability of obtaining a violation is related
to grammatical redundancy: The more constrained
the grammar, the easier it is to introduce a viola-
tion by chance. We did not anticipate the potential
confound, but offer an analysis of it following the
experiment. Further, as in Experiment 2, the par-
ticular stimuli used by each participant were deter-
mined by assigning randomly digits to the row and
column headings of the transition table that
defined the grammar.

Procedure
Training and test procedures were identical to
those from Experiment 2, except that half of the
participants read aloud 40 rather than 20 training
exemplars.

Results and discussion

Figure 4 (top panel) shows the percentage of trials
on which participants selected a grammatical
test string as a function of grammatical redun-
dancy and number of training exemplars.
Single-sample ¢ tests confirmed that discrimi-
nation was better than chance (50%) in all but
two conditions (G = .33 and .14, both with 20

training exemplars).
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Figure 4. The top panel shows percentage correct in Experiment 3
as a function of grammatical redundancy and the number of
training exemplars. Error bars represent standard errors. The
bottom panel shows simulations of Experiment 3. Parameters:
n =20, L= 45

Correct choices increased linearly from 52%
(SE = 2%) to 68% (SE = 5%) as a function of
grammatical redundancy, F(1, 48) = 23.74, MSE
=69.41, 7 = .30, p < .05, and accuracy was 5%
better after training with 40 strings than after
training with 20 strings, F(1, 48) = 5.48, MSE
=69.41, 7% = .07, p < .05. There was no evidence
that extended practice interacted with grammatical
redundancy, F(3, 48) = 0.24, MSE = 69.41, ° =
.01, p > .05.

As in Experiments 1 and 2, participants
improved at rejecting strings as the number of
rule violations increased (see the closed circles in
Figure 5). Participants were tested with a mean
of 9.6, 7.8, 8.7, 9.1, 8.3, 5.0, and 1.5 strings with
1, 2,3, 4,5, 6, and 7 violations, respectively. The
variation in the size of the standard errors in

Figure 5 is exaggerated by differences in the

INFERRING GRAMMATICALITY FROM SIMILARITY
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Figure 5. Percentage correct in Experiment 3 as a function of
number of rule violations in the ungrammatical alternative.
Closed circles show observed performance; open circles show
simulated performance. Performance is collapsed across all eight
cells in the experimental design. Error bars represent standard
errors. Parameters: n = 20, L = .45.

number of test trials on which participants were
presented an ungrammatical string with 1, 2, 3,
4,5, 6, and 7 rule violations.

Following the test phase, we asked participants
whether they could articulate the rules of the
grammar. None of our participants articulated
the rules. Next, we asked participants to provide
a rule that we could give to a yoked participant
so that the yoked participant would be able to
reproduce their decisions: Participants were unan-
imously reluctant to give the verbal rule, and many
refused. When pressed, some of our participants
gave rules that identified specific groups of digits
that they remembered from the training materials
(e.g., “Some of the strings had a 1 and an 8, and
sometimes a 5 and 2 were beside each other”).
However, participants who gave these rules
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expressed very little confidence in the rules they
gave. The 3 participants who claimed their rules
would help a yoked participant asserted that the
rule they provided would only work some of the
time.

The experiment replicated the classic results
from earlier experiments. It also showed that dis-
crimination improved as a function of both
amount of structure and the number of training
exemplars. Finally, although participants were
able to assess the grammatical status of the test
strings, they were unable to describe the
grammar. Instead, they reported strategies based
on the similarity of the test strings to the training
strings.

The fact that participants in all three exper-
iments were able to exploit structure is not sur-
prising: People exploit structure in many
situations. The surprise is that participants were
sensitive to subtle contingencies after so little
exposure to them, even when they were
unaware that the contingencies were available
to be learned.

Although the exemplar view assumes only
that participants encode the exemplars, encoding
multiple strings presents its own difficulties.
Memory is limited. The limitation is usually dis-
cussed in terms of the number of whole items
that people can encode and hold in short-term
store (e.g., Miller, 1956; see also Cowan,
1995). Instead of treating memory as a store
with a fixed capacity measured in whole items,
perhaps a realistic alternative is that participants
encode large numbers of items but that encoding
is both noisy and imperfect. In the following
section, we use the imperfect-encoding idea to
show how an exemplar model of memory uses
a noisy representation of the exemplars to drive
performance.

UNDERSTANDING THE
ARTIFICIAL-GRAMMAR TASK

When Reber (1967) reported his classic exper-
iments, influential theories of concept formation

(developed by Bruner, Goodnow, & Austin,

1956) proposed that category learning was as a
deliberate process of induction: Participants
parsed stimuli into bundles of features and devel-
oped rules that related the features to the cat-
egories. An implicit learning system that
performed the inductive process independently of
awareness was a natural extension of existing
wisdom.

In the next two decades, work in memory and
categorization grew in sophistication, and theor-
ists developed ways to represent stimuli and to
describe the processes that operate on them. In
current models of episodic recognition, for
example, encoded items are represented in a
graded rather than all-or-none fashion; that is,
items are encoded imperfectly to different
degrees of resolution (e.g., Hintzman, 1984).
Some models even merge information about sep-
arate items into a single holographic structure
(Eich, 1982; Murdock, 1982b, 1983). To replace
the serial-search idea, techniques were developed
for comparing a single item against a set of
items. The concept of parallel retrieval encouraged
the development of the global memory models
(e.g., Eich, 1982; Gillund & Shiffrin, 1984;
Hintzman, 1984; Murdock, 1982b, 1983; Pike,
1984; Raaijmakers & Shiftrin, 1981; see Clark &
Gronlund, 1996, for a review). Parallel access
was also used in models of item categorization,
where exemplars are represented as points in a
multidimensional psychological space (Medin &
Schaffer, 1978), and categorization is determined
by computing the sum of the distances of a
probe to all previously encountered exemplars
from the category in question; the smaller the dis-
tance, the more likely the probe is to be a member
of the category (see also Nosofsky, 1984, 1986,
1991; Nosofsky & Palmeri, 1997).

In their work, Brooks and his colleagues have
promoted the principles of an exemplar account
for understanding judgement of grammaticality,
but have left the development of a working
model as a promissory note (e.g., Brooks, 1978;
Brooks & Vokey, 1991; Vokey & Brooks, 1992).
Here, we fulfil their promise by adapting a multi-
trace model of memory to the task of judging
grammatical status.
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Minerva 2

Minerva 2 (Hintzman, 1984, 1986, 1988, 1990) is a
multitrace  model of memory. The model
was developed initially to understand the episodic-
recognition and judgement-of-frequency tasks.
It has since been applied to a wide range of
phenomena including categorization (Hintzman,
1986, 1988), confidence—accuracy inversions in
recognition memory (Clark, 1997), recognition
failure of recallable words (Hintzman, 1987),
false recognition in the Deese—Roediger—
McDermott  (DRM)  paradigm  (Arndt &
Hirshman, 1998), clinical diagnosis (Dougherty,
Gettys, & Ogden, 1999), extrapolation in function
learning (Kwantes & Neal, 2006), speech perception
(Goldinger, 1998), word naming (Kwantes &
Mewhort, 1999), and access to semantic memory
(Kwantes, 2005).

Minerva 2 proposes that when a participant
encounters an item, the item is encoded to
memory as a separate trace. When a recognition
probe is presented, it is compared, in parallel, to
all traces in memory, and each trace is activated
in proportion to its similarity to the probe. The
activated exemplars are merged into an echo. The
echo’s content is an aggregate of the information
in memory activated by the probe. The echo’s
intensity measures the activation triggered by the
probe and is often used as the basis for judgements
of familiarity.

In the model, a stimulus is represented by a vector
of n elements. Each element takes one of two values:
+1 or —1 with equal probability—that is, p(+1) =
p(=1) = .5. An association between two stimuli
(or between a stimulus and a response, or a stimulus
and a category label) is represented by concatenating
the constituent item vectors to form a new vector of
double dimensionality.

In Minerva 2, memory is a matrix with one row
(vector) for each studied event. Encoding an event
involves copying its vector to a new row in the
memory matrix. Encoding can be imperfect. The
model accommodates variation in the quality of
encoding by varying the number of elements in a
stimulus vector that are stored correctly. If a par-
ticular element is not stored correctly, its value is

INFERRING GRAMMATICALITY FROM SIMILARITY

set to O (indicating that it is indeterminate or
unknown). The parameter L controls the prob-
ability with which an element is stored. As L
increases, the resolution of the encoded stimulus
improves. Minerva 2 treats forgetting as the
inverse of correct encoding; hence, L is used also
to accommodate memory loss.

In the model, all retrieval is cued. When a cue is
presented, it activates all memory traces in pro-
portion to their similarity to the cue. The acti-
vation from all traces is aggregated into a
composite trace (the echo). Similarity of trace, i,
to the probe, P, is given by

S — Z;l':l P x M
1 7 M

where P, is the value of the jth feature in the probe,
M;; is the value of jth feature of the sth row in
memory, and 7 is the number of features in the
vectors under comparison. Like the Pearson 7, the
similarity of the 7th item to the probe, §;, is scaled
to the interval {—1, +1} by dividing the numerator
(the dot-product) by 7. Similarity equals +1 when
the row is identical to the probe.

The ith trace’s activation, 4;, is the cube of the
similarity to the probe,

4;=5;.

The activation function exaggerates the differ-
ences in similarity between the probe and the
items in memory by attenuating retrieval of exem-
plars that are dissimilar or only moderately similar
to the probe. Note that using an odd-numbered
exponent in the activation function preserves the
sign of the argument, §;.

The echo, C, is a vector obtained by weighting
each of the ;=1 ... m traces in memory by its acti-
vation and summing all 7 traces into a composite,

Cj = Zm:AZ X M,j
=1

The echo represents the amalgam of traces that
the probe retrieves from memory and is used to
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model experiments in which information must be
recovered from memory.

The echo’s intensity is computed by summing
activation across the = traces in memory—that
1s,1=1...m,

The echo’s intensity, I, ranges between — and
m, and it 1s a function of both the number of traces
in memory and the degree to which the traces
match the probe. If all traces in memory were
identical to the probe, I = m. Echo intensity is
used often as an index of the probe’s similarity to
items in memory. However, because the intensity
measure is additive, it can vary dramatically with
the number of items stored in memory. An
alternative measure of intensity is obtained by
computing the similarity between normalizing the
echo and it and the probe (see Hintzman, 1988,
p. 546):

I:Zj‘:lpjxcj
n b

where P;is the value of the jth feature in the probe,
C; is the value of jth feature in the echo, and 7 is
the number of features in the vectors under com-
parison. Because we compare performance with
different numbers of training items, we adopt the
latter method.

Adapting Minerva 2 to Experiment 1

In Experiment 1, the strings comprised four unfa-
miliar characters organized according to an odd-—
even positional rule. To implement the rule, the
pool of six characters was divided into two sets;
the characters from one set were assigned odd pos-
itions, and the characters from the other set were
assigned even positions.

To simulate the task, we started by constructing
six vectors, one to stand for each character. Each
character vector was of dimensionality 20 with
values of +1 or —1 selected at random with

p(H1) = p(—1) = .5. When participants studied

the strings, we assumed that they treated each
string as a four-character unit. Accordingly, we
represented each string in memory by concatenat-
ing four character vectors to form a single vector
composed of four successive subfields, one subfield
for each symbol in the string.

Each participant studied 20 training strings.
Accordingly, we stocked memory with 20
vectors, each vector corresponding to one of the
20 studied strings. Hence, after encoding,
memory comprised 20 vectors of 80 elements.

The stimulus strings were unfamiliar charac-
ters; hence, it is unlikely that participants
encoded them well. Accordingly, we set the learn-
ing parameter to a low value, L = .2. As a result,
about 80% of the elements in each string were
indeterminate, representing sparse encoding of
items.

To simulate the judgement-of-grammaticality
task, we constructed vectors to represent the
probes used in Experiment 1; the probes were con-
structed in the same fashion as the study strings.
Each probe was applied to memory, and an echo
was produced. A string was endorsed as gramma-
tical if the echo intensity exceeded a decision cri-
terion, £ = .39. To obtain stable point estimates
of performance, we averaged across 100 indepen-
dent simulations of the experimental procedure.

Simulated performance matched participants’
performance in Experiment 1 closely. In
Experiment 1, the hit and false-alarm rates were
.63 (SE = .02) and .48 (SE = .03), respectively,
tor a 4 = 0.38. By comparison, the simulated
hit and false-alarm rates were .65 and .47, respect-
ively, for a &’ = 0.45. The model fit yielded a bias
toward a “consistent” response, C = —0.16; the
same bias observed in the corresponding exper-
iment, C = —0.15.

Simulated performance also matched the typi-
cality gradient of the empirical data. The open
circles in Figure 2 show the percentage of test
strings identified as grammatical in the simulation
as a function of the number of rule violations in
test strings. As is clear in Figure 2, means com-
puted from the simulated data provided a close
match to the means computed from participants’
performance: The greater the number of rule
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violations in a test string, the less likely that the
string was endorsed, RMSE = 2.53%.

The typicality gradient is easy to understand in
terms of the global similarity measure. A gramma-
tical test string never matched a single training
string on all four symbols, but it matched several
training strings on one to three symbols. Each
additional rule violation in an ungrammatical
string decreased the number of symbols that
matched individual training items and, thereby,
decreased the string’s global similarity to the train-
ing set.

The simulation exhibits the critical features
from studies of implicit learning using the artifi-
cial-grammar task. The model does not know
the grammar, either explicitly or implicitly, yet it
captures judgements of grammaticality. We take
the demonstration as evidence that it is not necess-
ary to suppose that participants learned and
applied implicit knowledge of the grammar in
order to understand their performance. Instead,
we conclude that performance reflects well-
known principles of memory, principles that have
been exploited to understand performance in rec-
ognition and classification experiments for more
than 20 years.

The exemplar view differs from the implicit-
learning view in four main ways. (a) The
implicit-learning view claims that the regularities
in training strings are available in a centralized
torm, likely as a set of rules. In the exemplar
view, the rules used to construct the training
strings are not represented in memory, but infor-
mation about the regularities produced by the
rules is represented indirectly in the encoded
exemplars. People learn the exemplars; they do
not learn the grammar. (b) According to the
implicit-learning view, participants abstract the
grammar during training and then apply it
during test. On the exemplar view, participants
store exemplars and judge a probe’s grammatical
status using its similarity to known grammatical
cases. (¢) In the implicit-learning view, knowledge
about the grammar is compiled prospectively in the
form of grammatical rules. In the exemplar view,
judgements of grammaticality are computed rezro-
spectively at the time of test by a comparison of the

INFERRING GRAMMATICALITY FROM SIMILARITY

probe to memory of studied items. (d) The
implicit-learning view supposes that performance
in the artificial-grammar task reflects mechanisms
in a specialized learning system. The exemplar
view attributes performance to the same mechan-
isms as those that are used widely to understand
performance in episodic-memory tasks.

Adapting Minerva 2 to Experiment 2

In Experiment 2 we tested learning of sequential
dependencies. The stimuli were strings of eight
digits constructed according to sequential rules.
To simulate the task, we started by constructing
eight unique 20-element vectors, one for each of
the eight digits. The vectors were concatenated
to form 20 training strings of 160 elements com-
posed of eight successive subfields, one subfield
for each position in the string, and 100 novel test
strings of 160 elements (50 grammatical and 50
ungrammatical).

We stocked memory with the training strings, 1
row per string. Hence, after encoding the training
strings, the memory matrix had 20 rows (1 for each
training string) and 160 columns. When we simu-
lated Experiment 1, we set the learning parameter
very low to acknowledge the difficulty that partici-
pants had when encoding unfamiliar characters.
Because the stimuli in Experiment 2 were familiar
digits, we set the learning rate higher, L = .55.
Nevertheless, the matrix was still sparse with
almost half of its elements set to zero.

Each test involved one grammatical and one
ungrammatical test string. Both test strings were
compared against memory and generated two sep-
arate echoes. The test string with the greater echo
intensity was selected as the grammatical alterna-
tive. We conducted 100 independent replications
of the procedure to obtain stable point estimates
of performance. In the simulation, grammatical
test strings were selected on 57% of the trials
matching the score of 57% correct (SE = 1%)
obtained in Experiment 2.

The open circles in Figure 3 show simulated
percentage correct as a function of the number of
rule violations in the ungrammatical alternative
of each test pair. For both the model (open
circles) and the participants (closed circles), the
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probability of choosing the grammatical string
over its ungrammatical alternative increased with
the number of violations in the ungrammatical
alternative. The correspondence between simu-
lated and observed performance shown in
Figure 3 was high, RMSE = 3.74%.

The model accommodated the results from
Experiments 1 and 2—materials constructed
according to positional and sequential dependen-
cies, respectively—without requiring modification
of its encoding and retrieval assumptions. In fact,
we removed a free parameter (i.e., the criterion)
by using a two-alternative forced-choice test pro-
cedure. The success of our simulations underscores
our main point: One can assess the grammatical
status of a test item based on its global similarity
to studied exemplars and without knowledge of
the rules used to construct training items; one
does not need to know the grammatical rules
to show sensitivity to contingencies in studied
exemplars. Performance in the judgement-of-
grammaticality task is explained using the same
mechanisms as those that are used widely to
understand phenomena of episodic memory.

Adapting Minerva 2 to Experiment 3

Next, we applied the model to the factorial design
in Experiment 3. Except for variation in both
grammatical redundancy and the number of train-
ing exemplars, the simulations were the same as
those for Experiment 2. Because participants
received less study time per item in Experiment
3 (8 s per item) than in Experiment 2 (10 s per
item), L was lowered to .45.

Figure 4 (bottom panel) shows the percentage
of trials on which a grammatical string was
chosen correctly as a function of both grammatical
redundancy and the number of training exemplars.
As in the observed data (see Figure 4, top panel),
discrimination improved as a function of both
factors. The cell-by-cell correspondence between
simulated and observed performance was high,
RMSE = 1.78%.

Figure 5 shows performance as a function of the
number of rule violations in the ungrammatical
alternative. As is clear in the figure, the simulated

typicality gradient matched the empirical one,
RMSE = 4.83%.

The model captured performance as a function of
both grammatical redundancy and the number of
exemplars presented in training. Neither result is
surprising from the perspective of episodic-
memory theory. First, by increasing the number of
exemplars, the strings stored in memory provide a
better representation of the contingencies derived
from the grammar; measurement of echo intensity
from a larger IV is influenced by outliers less than
it 1s from a small IV (the central limit theorem).
Second, increasing grammatical redundancy makes
the exemplars that are produced by the grammar
more homogeneous. As a result, increasing redun-
dancy of the grammar forces grammatical and
ungrammatical probes to be more and less like the
exemplars stored in memory, respectively.

To illustrate this point, we present Figure 6.
Figure 6 illustrates the shift in similarity for test
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Figure 6. Similarity of the probe to the echo as a function of
grammatical redundancy and number of rule violations. Curves
correspond to the 40-exemplar condition.
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probes as a function of both grammatical redun-
dancy and number of rule violations. The data
are taken from the simulation for the 40-exemplar
cell. As shown, echo intensity of grammatical
probes (i.e., zero violation probes) increased as a
function of grammatical redundancy. For ungram-
matical strings, the slope of echo intensity as a
function of grammatical redundancy decreased
the greater the number of grammatical violations
in a string; for ungrammatical strings with more
than four violations, the slope was negative.
These two factors combined to produce increas-
ingly better discrimination of grammatical and
ungrammatical probes as grammatical redundancy
was increased. The pattern of performance in the
bottom panel of Figure 4 is a direct consequence
of this factor and accounts for participants’ per-
formance in the experiment shown in the top

panel of Figure 4.

Adapting Minerva 2 to complex grammars

Most work with the artificial-grammar task has
used complex grammars of the sort illustrated in
Figure 1. Having shown that the model captures
performance in experiments with contingencies
based on simple position and sequential rules, we
turn our attention to experiments with contingen-
cies based on complex grammars.

Reber (1967). Reber’s (1967) seminal study has
served as the point of departure for most modern
work with the artificial-grammar task. In his
study, participants studied grammatical exemplars
and, after training, were invited to judge the gram-
matical status of novel test probes. Reber’s partici-
pants (Exp. 2) achieved 69.4% correct, but were
unable to articulate the grammar.

We extended the model to deal with Reber’s
(1967) materials. We started by constructing five
unique 20-element vectors, one for each of the
five letters that Reber used to construct his
materials: P, §, 7, 7, and X. In the experiment,
participants studied 20 grammatical strings and
then were tested with 24 novel grammatical test
strings and 24 ungrammatical test strings.
Unfortunately, Reber did not list the specific
study items in the 1967 paper. He did, however,
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list a representative example of strings from his
grammar elsewhere (Reber, 1993, p. 36). We
took our strings (both grammatical and ungram-
matical) from the latter source that comprised a
study list of 20 grammatical training strings, 25
grammatical test strings (6 of which were in the
set of 20 training strings), and 25 ungrammatical
test strings.

The letter-vectors were concatenated to form 70
string-vectors of 160 elements corresponding to the
training and test strings. As we noted -earlier,
because strings varied in length, we were forced to
invent a way for comparing strings of different
length. We elected to compare the letters of the
probe to the letter in the corresponding position
each string in memory. Accordingly, we treated
each stimulus as a string with eight letters. For
strings with fewer than eight letters, a vector of
zeros coded each blank position. As a result, the
string MTV (a popular TV channel not available at
the time of the original experiment) was encoded
as a string with eight letters but the elements in
the fourth to last subfields of the vector were set to
zero. We stocked memory with the 20 training
strings, one row per string. After encoding the train-
ing strings, the memory matrix had 20 rows (one for
each training string) and 160 columns.

To simulate Experiments 1-3 reported in this
paper, we set the learning parameter to a low
value to acknowledge the difficulty of encoding
briefly presented strings. In addition, we had par-
ticipants read the strings one at a time. By contrast,
Reber (1967) presented sets of four strings and
required the participants to reproduce the set
twice before moving onto a new set of strings.
As a result, his participants must have encoded
the materials more completely than our partici-
pants did. Nevertheless, encoding cannot have
been perfect, because successive sets would likely
interfere with memory for the earlier sets. To
acknowledge the difference between our exper-
iments and Reber’s, we set the learning parameter
to a much larger value than before, L = .75.
Accordingly, after encoding the strings, memory
for individual strings was much stronger.

As before, each test string was applied to
memory, and an echo was produced. The test
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string was endorsed as grammatical if the echo
intensity exceeded a decision criterion. Because
we assumed better encoding with Reber’s (1967)
procedure than with ours, memory was less
sparse than that in our earlier simulations, and
we had to rescale the decision criterion. Using a
higher criterion, £ = .63, the model matched per-
formance of Reber’s (1967, Exp. 2) participants,
69% correct: Simulated hit and false-alarm rates
were .77 and .39, respectively. A model developed
to explain recognition and categorization perform-
ance can explain performance in the judgement-
of-grammaticality task.

Dienes, Broadbent, and Berry (1991). Dienes et al.
(1991; Exp. 1) manipulated the grammatical hom-
ogeneity of the study materials in an artificial-
grammar task. Participants in one group, the pure
group, studied 20 grammatical training strings
before judging the grammatical status of 25 gram-
matical and 25 ungrammatical test probes in a
yes/no test procedure. Participants in the second
group, the mixed group studied 20 grammatical
and 20 ungrammatical training strings before
judging the grammatical status of 25 grammatical
and 25 ungrammatical test probes in a yes/no test
procedure. Participants in the pure group achieved
65% correct (SE = 2%); those in the mixed group
achieved 60% correct (SE = 1%).

From the current model’s perspective, the
mixed group presents a challenge. When the par-
ticipants in the mixed group studied the nongram-
matical strings, the fact that the strings were not
grammatical was correlated with colour of the
display. The colour may have allowed the partici-
pants to distinguish grammatical from ungramma-
tical strings at study; even though they probably
had neither motivation nor explicit instructions
to do so. The model does not include a mechanism
with which to notice the signal; instead, all of the
exemplars—both grammatical and nongrammati-
cal—are treated as if they were grammatical.
Hence, memory includes as many ungrammatical
strings as grammatical strings.

Although half the studied items were ungram-
matical, the manipulation of grammatical status is
unlikely to have destroyed the pattern of

contingencies established by the grammatical
items. Violations of the grammar were introduced
by “substituting an inappropriate letter for an
appropriate letter in an otherwise grammatical
string. The position of the violation covered letter
positions one to six of the 15 exemplars” (Dienes
etal., 1991, p. 877). The effect of the manipulation
should be to weaken the contingencies aligned with
the offending letter, but to strengthen the contin-
gencies aligned with the remaining letters. At
issue, then, is how the two forces balance. It
seems safe to anticipate that the pure group will
represent the contingencies of the grammar more
accurately than will the mixed group. For that
reason, performance should be better in the pure
group than in the mixed group.

The materials are provided in Dienes et al.’s
(1991) Table 1. The strings were constructed
from the consonants M, 7T, V, R, and X and
included between three and six consonants. Each
training string was studied for 5s. Five of the
grammatical training strings and five of the
ungrammatical training strings were presented
both at study and at test.

To adapt the model to Dienes et al.’s (1991)
materials, we started by constructing five unique
20-element vectors, one for each of the five
letters used to construct the strings: M, 7, V, X,
and R. The vectors were concatenated to form
90 vectors of 120 elements that corresponded to
each training and test string (see Appendix for a
different representation scheme used by Dienes,
1992). To simulate the pure group, we stocked
memory with the 20 grammatical training
strings, one row per string. To simulate the
mixed group, we stocked memory with the 20
grammatical and 20 ungrammatical training
strings. Hence, for the pure group, the memory
matrix had 20 rows (1 for each training string)
and 120 columns; for the mixed group, the
memory matrix had 40 rows and 120 columns.

Each of the 50 test strings was applied to
memory, and an echo was produced for each. A
string was endorsed as grammatical if the echo
intensity exceeded a decision criterion. We set L

to .35 to reflect poor encoding of stimuli, and we
set & to .45.
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Simulated performance of the pure and mixed
groups—65% and 59%, respectively—closely
matched performance of Dienes et al.’s (1991) par-
ticipants in the corresponding conditions—65%
and 60%, respectively. As anticipated, the pure
condition represented the contingencies of the
grammar more accurately than did the mixed con-
dition. A violation of the grammar produced by
substituting an incorrect item for a correct one is
a local perturbation; it weakens the contingencies
aligned with the offending item, but the rest of
the string strengthens the rest of the grammar’s
contingencies. The decision is based on a global
measure of the match of the probe to memory.
The global measure is able to balance the local
effect of a violation against the broader effect of
strengthening valid contingencies in memory. In
a rule-based system, by contrast, if ungrammatical
strings were treated as valid items, the ungramma-
tical items would contradict the rules, and, for that
reason, a rule-based system is likely to become
confused. The principle at work here is that a simi-
larity-based model balances the partial contradic-
tion; it is more accommodating to perturbations
in regularity than a system in which a single rule
violation invalidates a whole string.

Vokey and Brooks (1992). Vokey and Brooks (1992;
Exp. 2) attempted to manipulate similarity and
grammaticality independently. In their exper-
iment, participants studied eight grammatical
training strings composed of three to eight conso-
nants. Half of the test strings (both grammatical
and ungrammatical) were similar to a training
string (called near items), and half were dissimilar
to the training strings (called far items). The simi-
larity manipulation involved changing specific
letters to alter the similarity relation for pairs of
strings. A near item, for example, was the same
as a training item but with one letter changed.
Far items had more letters changed, but—and
this is the important part of the manipulation—
both near and far items could be either grammati-
cal or not. By constructing test strings in this way,
Vokey and Brooks were able to construct a factor-
ial arrangement of similarity and grammatical
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status. Their stimuli can be found in Vokey and
Brooks’ Table 4.

The experiment was administered in the usual
fashion: After studying the training strings, the
participants were told about the use of rules and,
then, were instructed to decide whether or not
novel test strings conformed to the rules. Half of
the test items were grammatical, and half were
ungrammatical.

Vokey and Brooks (1992) anticipated that per-
formance would be dominated by their similarity
factor. To their evident surprise, both the simi-
larity and grammatical status variables influenced
performance. Their results are summarized in the
top panel of Figure 7.

The fact that both variables affected perform-
ance may appear to challenge the principles of

[ INear
0.6 ) Far
0.5 | [ Empirical
0.4 [

©
(N
1

o
=
I

o
(=)

Grammatical Ungrammatical

g
3
1

Simulation

o
~
1

"

©
w
L

L

Proportion Endorsed as Grammatical
o
]

o
¥
1

o
=
1

o
=}

Grammatical Ungrammatical

Grammatical Status

Figure 7. Proportion of strings endorsed as grammatical as a
Jfunction of grammatical status and similarity (near and far). The
top panel summarizes data from Vokey and Brooks (1992). The
bottom  panel summarizes the simulation of the experiment.
Parameters: n = 20, L. = .35, k = .371.
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the current model. The model’s success in the
earlier simulations implies that grammatical
status is not an effective variable; the effective vari-
able is global similarity. Global similarity differ-
ences occur because the grammar creates
frequency differences among the stored exemplars,
and the model’s measure of global similarity is sen-
sitive to the resulting similarity structure. Because
global similarity is the effective variable underlying
performance, Vokey and Brooks (1992) near—far
manipulation cannot have made similarity entirely
orthogonal to grammatical status.

The situation, here, is similar to that in the
Dienes et al. (1991) example. The near—far manipu-
lation was arranged by changing letters in specific
pairs of stimuli. The model’s decision, however, is
based on a global measure of the match of the
probe to memory. Based on the simulation of
Dienes et al.’s materials, the global measure should
be able to balance the local effects against the
broader effect of the valid contingencies in memory.

To adapt the model to the Vokey and Brooks
(1992) experiment, we constructed five random
20-element character vectors, one for each of the
five letters: M, R, V, X, and 7. The character
vectors were concatenated to form a set of 72
vectors of 160 elements, one for each of the train-
ing and test strings used in the experiment. We
stocked memory with the eight training strings,
one row per string. Hence, after encoding the
training strings, the memory matrix had eight
rows (one for each training string) and 160
columns. As before, to acknowledge the difficulty
of encoding the strings given fleeting exposure to
them, we set L to a low value (L = .35).

A test string was endorsed as grammatical if the
echo intensity exceeded the decision criterion—
that is, £ = .371. To obtain stable data, the
results were averaged over 100 independent repli-
cations. The simulated results are presented in the
bottom panel of Figure 7.

Comparing the two panels of Figure 7, it is
clear that the simulation matched the data well.
In particular, it captured the apparent although
unreliable interaction between grammatical status
and similarity, RMSE = .016. Decision in the
model is based on global similarity, and, as in the

Dienes et al. (1991) example, global similarity
balanced the local perturbations against the
contingencies among the stored exemplars. In
short, the factorial arrangement of local similarity
(near and far) and grammatical status is con-
tounded with global similarity, and the model’s
reliance on global similarity allows it to capture
the effect of grammaticality.

GENERAL DISCUSSION

After studying grammatical exemplars, partici-
pants can discriminate novel grammatical items
from novel ungrammatical items. Because partici-
pants cannot articulate the grammar, the ability
has been taken as evidence that they learn the
grammar implicitly. We have reported three
experiments that confirm standard results for illus-
trating sensitivity to structure. Experiment 1 used
rules that imposed positional dependencies on
symbols (i.e., the odd/even rule). Experiment 2
used rules that imposed sequential dependencies
on symbols (i.e., a sequential grammar).
Experiment 3 used sequential rules and varied
both the amount of grammatical redundancy and
the amount of learning. For all three experiments,
the greater the number of rule violations in the
probe, the more likely participants were to reject it.

We adapted an exemplar model of memory,
Minerva 2, to help understand participants’ per-
formance in the artificial-grammar learning task.
The model provided a close fit to performance in
each of the three experiments and to three classic
experiments conducted in other labs (Dienes
et al, 1991; Reber, 1967; Vokey & Brooks,
1992). According to our account, participants
store each studied stimulus in memory and judge
the grammaticality of a novel stimulus in terms
of its global similarity to the stored items. The
model handled performance with materials con-
structed using positional and sequential dependen-
cies without changing its representation,
encoding, or retrieval assumptions. We conclude
that evidence from standard artificial-grammar-
learning tasks does not force an account based on
a separate specialized implicit-learning system.
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Instead, our evidence is that participants judge the
grammatical status of a test probe by assessing its
similarity to noisy representations of studied
exemplars stored in memory. The larger impli-
cation of our claim is that performance in the jud-
gement-of-grammaticality task is explained using
the same principles and models as those used to
explain performance in a sweep of other standard
explicit-memory tasks.

Both the fragment and dual-systems positions
postulate mechanisms to compile knowledge pro-
spectively, either as rules or as a record of gramma-
tical primitives (see Pothos, 2007, for a review of
models applied to the judgement-of-grammaticality
task). Instead, by focusing on global similarity in
response to a probe, we have framed the judgement
of grammatical status as a retrieval phenomenon.
Retrieval is sensitive to structure of material in
memory, even when individual exemplars are
encoded imperfectly. We see no need to suppose
that people abstract a distinct and separate represen-
tation of the grammar used to construct stimuli in
our experiments.

Instead, we conclude that imperfect memory
for training exemplars is enough to support the
participants’ ability to judge the grammatical
status of test items. This empirical point,
however, points to a broader message:
Performance in the judgement-of-grammaticality
task reflects the same principles widely used to
understand performance in other memory tasks.
As we documented earlier, Minerva 2 has been
applied successfully to a wide number of situations.
The present work ties performance in the artifi-
cial-grammar procedure to a long history of work
in human memory. The integrative potential of
such a simple model is particularly exciting.

Our general theoretical approach echoes the
work of Pothos and Bailey (2000) who studied
the role of similarity using unfamiliar visual
stimuli. To assess similarity among the strings,
they used a scaling technique recommended by
Nosofsky (1991) and then applied those similarity
measures to guide exemplar retrieval. We used a
random vector to stand for each element in each
stimulus string and calculated global similarity of
each probe from the juxtaposition of events in
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memory: We did not attempt to represent the
similarity relations among the elements of the
string explicitly (e.g., P and R are more easily
confused visually than P and X). Armed,
however, with a scaling solution for similarity
relations among symbols, it is certainly possible
to construct vectors that map onto the similarity
relations among the elements of each string. Our
main point, however, is that performance reflects
retrieval from memory and that similarity is con-
structed on the fly in response to a probe. One
can go some distance without scaling subjective
similarity ratings in advance.

A class of evidence for the separate systems view
that we have not addressed concerns performance of
brain-damaged patients. Reed, Squire, Patalano,
Smith, and Jonides (1999) have showed that
certain amnesiac patients perform well when discri-
minating grammatical from ungrammatical probes
but cannot recall features from the studied material
in an explicit cued-recall test. Because performance
on the explicit task is impaired relative to that on
the implicit task, the data are often cited as evidence
for a division between explicit (called declarative)
and implicit memory.

Two kinds of argument have been marshalled
against the dissociation evidence. First, as we
noted earlier, the dissociation does not have the
logical force needed to compel a two-systems view
(Dunn & Kirsner, 1988; Hintzman, 1990). More
directly, Nosofsky and Zaki (1998; see also Zaki,
Nosofsky, Jessup, & Unversagt, 2003) explained
the dissociation between recognition and classifi-
cation dissociation in amnesia using an exemplar
model of categorization. Kinder and Shanks (2001,
2003) developed a related explanation using a
connectionist model of memory to show that a gen-
eralized encoding deficit predicts the dissociation.

In terms of the current model, Reed et al’s
(1999) dissociation is not difficult to understand.
In all of our experiments, encoding was difficult.
To acknowledge the difficulty, we assumed that
the encoded information was incomplete; each
studied string in the model included a large
number of indeterminate features: about 80% for
Experiment 1, 45% for Experiment 2, and 55%
for Experiment 3. As a result, the memory

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 0000, 00 (0) 21



JAMIESON AND MEWHORT

matrix was sparse. It is unlikely that any single
string was represented well enough in the model
to support retrieval for recall. As the simulations
have shown, however, to assess the grammatical
status of a test probe, one does not need strong
(well-encoded) information for each studied
item. Rather, the assessment of grammatical
status depends on an aggregate constructed by
summing across all the studied items. Because
the aggregate sums information across the
encoded representations, it supported classification
even though the items in memory that the aggre-
gate was formed from were sparse. In terms of the
current work, the dissociation reflects the differ-
ence in retrieval required by the two tasks and
should not be taken as evidence for a division
between implicit and explicit learning.

The point has a larger implication. If deficits in
retrograde amnesia reflect a generalized encoding
deficit, rehabilitation techniques aimed at exploit-
ing an intact—but implicit—memory system are
misguided. Instead, rehabilitation should aim to
help patients compensate for their deficits by
training them to encode “strongly” and to make
use of their residual capabilities to rely on their
intuitions derived from retrieval of an aggregate.
This suggestion requires development. However,
it offers a novel perspective on therapeutic tech-
nique to help those with memory disorders.

A final point concerns the way decision is made
in the artificial-grammar task. Standard theory is
that participants endorse a probe if global simi-
larity is large enough (e.g., Green & Swets,
1966). An alternative is that participants actively
reject a probe that contradicts events in memory.
The two alternatives are usually so highly corre-
lated that they are hard to separate, but active
rejection has been documented both in judgement
of grammatical status (Wright & Burton, 1995)
and in studies of recognition memory (e.g., Johns
& Mewhort, 2002; Mewhort & Johns, 2000,
2005). Further research is needed to explore the
role of contradiction to the study set and the
nature of the decision process that people engage
in when judging an item’s grammatical status.

In summary, our account makes explicit a chain
of relations. A grammar specifies rules for how

grammatical strings are to be constructed.
Exemplars produced using the rules are con-
strained, and, for that reason, the rules introduce
frequency differences among the components of
the grammatical strings. Because retrieval is sensi-
tive to frequency differences among items in
memory, people are able to judge the grammatical
status of novel exemplars.
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APPENDIX

Comparison to simulations by Dienes (1992)

We adapted Minerva 2 to the artificial-grammar task to model Dienes et al.’s (1991) experiment; the simulations worked well. Dienes
(1992) adapted Minerva 2 to Reber’s (1967) grammar-learning experiment with mixed results. Why did our adaptation work when
his did not?> We think the difference reflects the way in which stimuli are represented in the two applications of the model.

To code our stimuli, we first constructed a random vector to represent each character and then concatenated the appropriate char-
acter vectors to form a string. Thus, a character’s identity was indicated by a pattern of 4+1/ —1 elements within a character field, and
the character’s position within the string was indicated by its position in the series of concatenated character vectors. Imperfect
encoding was accomplished by replacing some of the vector elements with zeros to indicate that the element was unknown.
Replacing elements in this way obscures information about each item independently without impacting memory for each
symbol’s position in the string.

Dienes’ (1992) coding system was very different. Reber’s (1967) grammar involved strings of letters (up to six) taken from a popu-
lation of five letters. In Dienes’ simulation, the letters were represented by a set of five input units, one unit for each letter in the
population. Each letter was coded by setting one unit within the set to a value of + 1 and setting the other units to values of
—1. Using this system, the letters M and V might be coded {+1 —1 —1 —1 —1} and {-1 +1 —1 —1 —1}, respectively. A
string of letters was coded by setting the identity of sets of units that were hardwired to a position. That is, the identity of each
letter was coded within a set of five units, and a letter’s position in the string was coded using sets of five units, one set of five
for each position in a string. In terms of the example, if the first set of five units indicates the letter in Position 1, and the second
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set of five units indicates the letter in Position 2, MV would be coded: Position1 = {+1 —1 —1 —1 —1}, Position2 = {-1 +1
-1 -1 —1}L

In light of the fleeting exposure to each study string, participants were unlikely to encode them very well; indeed, this was the
justification for introducing so much noise when encoding materials in our simulations. Suppose that a participant could not remem-
ber what letter was in a particular position in a string. To represent the situation, the model must be able to degrade the identity of the
letter without introducing other complications. In our adaptation of Minerva 2, such distortion was easy to implement by replacing
some of the +1/—1 values with Os. In Dienes’ (1992) adaptation, however, the distortion is not easy to implement. Consider the
{+1 —1 —1 —1 —1} vector coding for M in our example. Replacing the 41 value by a O—that is, {0 —1 —1 —1 —1}—
may appear to degrade the identity of the letter, but, because the —1 values indicate what the letter is not, the vector still signals
M. Replacing one of the other —1 values to the +1 value introduces competition between two possible letters, but does not
degrade the representation of either one. For example, {0 0 —1 —1 —1} indicates the letter is either M or V (because it is not
one of the other three possibilities). Unlike our implementation, replacing elements in this way does not obscure information
about each item independently.

The quality of encoding is important: Our simulations acknowledge that participants in the artificial-grammar task have only a
fleeting opportunity to encode the stimulus exemplars. If we were to ignore that fact and simulate performance assuming perfect
encoding, the simulations fail, as they should. In Experiment 1 with L = 1.0 (rather than L = .2), for example, an ungrammatical
string will be judged to be grammatical only rarely (if at all), a result inconsistent with the data. Although the effect of perfect encod-
ing is most dramatic for our Experiment 1, the same is true for our other two experiments. The influence of quality of encoding has on
performance is well established in work on human memory (e.g., the shorter exposure to a stimulus is, the worse memory for it
becomes).

In fairness, Dienes’ (1992) goal was not to show Minerva 2 in the best possible light but to contrast it with several other accounts,
each implemented in a neural network. To make the comparisons, all of the models were developed using the same representation
assumptions. Hintzman (1990) had sketched how Minerva 2 could be adapted to the neural-network formalism, and Dienes bor-
rowed heavily from Hintzman’s sketch. That said, to make Minerva 2 compatible with the other models, Dienes introduced con-
straints that our implementation escapes.
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