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task: Anticipating from experience
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We present a serial reaction time (SRT) task in which participants identified the location of a target by
pressing a key mapped to the location. The location of successive targets was determined by the rules
of a grammar, and we varied the redundancy of the grammar. Increasing both practice and the redun-
dancy of the grammar reduced response time, but the participants were unable to describe the
grammar. Such results are usually discussed as examples of implicit learning. Instead, we treat per-
formance in terms of retrieval from a multitrace memory. In our account, after each trial, participants
store a trace comprising the current stimulus, the response associated with it, and the context provided
by the immediately preceding response. When a target is presented, it is used as a prompt to retrieve
the response mapped to it. As participants practise the task, the redundancy of the series helps
point to the correct response and, thereby, speeds retrieval of the response. The model captured per-
formance in the experiment and in classic SRT studies from the literature. Its success shows that the
SRT task can be understood in terms of retrieval from memory without implying implicit learning.
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Hick—Hyman Law.

Reber (1967) was first to discuss the idea of

automatic learning under the name implicit learn-

Learning a set of words is difficult and effortful;
it involves deliberate organization of the material

(e.g., Tulving, 1962). Yet, people become sensitive
to regularities in their environment without delib-
erate effort and without explicit awareness.
Contrasting the two examples, several theorists
have argued for two learning systems: an explicit
system that handles deliberate learning, and an
automatic system that abstracts contingencies
and guides behaviour adaptively.

ing. In his now classic paper, people in a control
condition studied strings of letters ordered at
random; those in an experimental condition
studied strings ordered by the rules of an artificial
grammar. After they had studied the strings, the
participants were told that the stimuli had been
constructed using rules and were invited to sort
new grammatical test strings from new
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ungrammatical ones. Those who had studied
grammatical exemplars could distinguish the two
classes of stimuli (achieving a score of about 69%
correct), but they could not characterize the rules
that made strings grammatical. Those in the
control condition could not classify test items
better than chance. Reber argued that the ability
to sort the stimuli must reflect knowledge of the
rules, but, because the participants could not
characterize the rules, the knowledge must be
implicit. Following Reber, the idea that people
abstract rules implicitly has been endorsed widely
(e.g., Dienes, Broadbent, & Berry, 1991;
Knowlton, Ramus, & Squire, 1992; Knowlton &
Squire, 1993, 1994, 1996; Kuhn & Dienes, 2005;
Manza & Reber, 1997; Mathews et al., 1989;
McAndrews & Moscovitch, 1985; Reber, 1969,
1989, 1993; Rossnagel, 2001)."

The position that people abstract rules using
an implicit-learning system is known as the
two-systems view. It treats the judgement-of-
grammaticality task as a laboratory model of how
people acquire rules without explicit awareness or
effort. In Reber’s (1967) words, implicit abstrac-
tion is “a rudimentary inductive process that is
intrinsic in such phenomena as language learning
and pattern perception” (p. 863).

Despite its popularity, the two-systems view is
controversial. Three kinds of argument have
been marshalled against it. (a) The evidence that
participants abstract a grammar is almost always
confounded with other possibilities (see St. John
& Shanks, 1997). Rather than using the
grammar, for example, people may use infor-
mation correlated with it, such as the similarity
of the test exemplars to the studied exemplars
(e.g., Jamieson & Mewhort, 2005, 2009).
(b) The evidence that learning is implicit—the

fact that the participants cannot articulate the
rules—is almost always incomplete. People might
be able to describe the rules if they are questioned
more adroitly (e.g., Shanks & St. John, 1994;
St. John & Shanks, 1997). (c) Current evidence
favouring the two-systems view does not compel
that position: The dissociation between perform-
ance and awareness can be explained without
invoking two learning systems (Dunn & Kirsner,
1988; Hintzman, 1990; Jamieson & Mewhort,
2009; Vokey & Higham, 2005).

Other accounts have been advanced to replace
the implicit-abstraction view. One alternative,
called the exemplar view, proposes that people
infer the grammatical status of test strings by com-
paring them to memory of the training strings (see
Brooks, 1978; Brooks & Vokey, 1991; Jamieson &
Mewhort, 2009; Vokey & Brooks, 1992, 1994;
Whittlesea & Dorken, 1993; Whittlesea &
Wiright, 1997; Wright & Whittlesea, 1998).

To implement the exemplar position, Jamieson
and Mewhort (2009) adapted Hintzman’s exemplar
model of memory, Minerva 2, to the judgement-of-
grammaticality task (see Hintzman, 1984, 1986,
1988). In the task, grammatical exemplars are
constructed by ordering strings of symbols accord-
ing to the grammar’s rules. To simulate perform-
ance, the model was provided with the same series
of symbols as those shown to the participants. A
unique vector of random values was used to rep-
resent each of the separate symbols within the
model, and a grammatical string was constructed
by concatenating the appropriate vectors to form a
separate trace in memory. The grammaticality of a
novel exemplar was assessed by its similarity to an
aggregate of the stored traces.

Simulations with Minerva 2 matched perform-
ance in three new experiments and in three

! Although the judgement-of-grammaticality task has been used widely to investigate implicit learning, it lacks precision. First, it

is unclear exactly what information a participant uses to make the choice. Second, a binary judgement truncates information into two
categories: unlikely to do justice to subtle details in whatever has been learned. Third, decisions about test strings’ grammaticality are
collected after a study phase; it is not clear how loss of information between acquisition and test will affect those decisions. Finally, the
grammars explored in many experiments conflate stimulus properties including positional dependencies (e.g., strings can begin with

only one or two symbols), sequential dependencies (e.g., each letter can be followed by only one or two others), string length, the
frequency of repeated letters, and so forth. Conflating so many factors makes a clear analysis difficult (see Johnstone & Shanks,

1999, 2001, for a full discussion).
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experiments from the literature (Dienes et al,
1991; Reber, 1967; Vokey & Brooks, 1992). In
all cases, increasing the number of rule violations
in the probe increased the probability that the par-
ticipants would reject it. Jamieson and Mewhort
(2009) concluded that, although the evidence
from standard artificial-grammar-learning tasks
remains consistent with an account based on a sep-
arate implicit-learning system, it does not compel
the two-process view. Instead of abstracting the
rules of the grammar, the simulations confirm
that participants could judge grammaticality
on the basis of similarity. The demonstration
shifts the burden of proof back to proponents of
the two-process view.

There is evidence for the two-process view,
however, that finesses the exemplar position and
Jamieson and Mewhort’s (2009) simulations, in
particular. Nissen and Bullemer’s (1987) influential
serial response time (SRT) experiment illustrates
the situation. They required participants to identify
the location of a target (an asterisk) on a computer
screen; each location at which the target could
appear was mapped to a unique response key.
When the target appeared, the participant noted
its location by pressing the response key mapped
to that position. In the experimental condition,
the target occurred in a repeating sequence; in a
control condition, the target appeared in
a random sequence. Response time decreased at a
faster rate across trials in the experimental condition
than in the control condition. The faster respond-
ing for the repeating sequence indicates that
people could exploit the repetition-induced struc-
ture in the series. Nevertheless, the participants
were unable to describe how the structure was
built into the series. The combination of results
illustrates a dissociation between performance and
awareness similar to the one that Reber (1967)
obtained using the judgement-of-grammaticality
task. In the SRT task, however, learning was
assessed using changes in response time; the assess-
ment did not involve test exemplars. Hence, the
exemplar view, and Jamieson and Mewhort’s simu-
lation model in particular, does not apply.

Difficulty in applying the categorization model
to the SRT task, however, does not falsify
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Jamieson and Mewhort’s (2009) main claim:
Performance reflects established principles of
retrieval from memory rather than an implicit-
learning mechanism. To apply the argument to
the SRT task, however, their account of retrieval
would have to be adapted to suit the difference
in the way learning is measured; that is, the
model must be modified to predict reaction time.
Here, we adapt Minerva 2 to estimate reaction
time and ask whether performance in SRT tasks
can be understood in terms of retrieval from
memory. A demonstration that the same principles
apply both to the judgement of grammaticality and
to the SRT task would unify our understanding of
the two paradigms and, again, call the two-systems
view into question. Before we develop our account
of retrieval in the SRT task, however, we present
an experiment to serve as a target for the
simulations.

In Jamieson and Mewhort’s (2009) third
experiment, participants studied strings of digits
arranged according to one of three grammars.
The grammars varied the redundancy of the
strings. After participants had studied the training
strings, they were told that the materials were
constructed using rules and were required to
judge the grammaticality of novel test strings in
a two-alternative forced-choice (2-AFC) task.
Participants’ ability to select the grammatical
item was an increasing linear function of the
redundancy of the strings used in the training
materials. Experiment 1 examines whether or not
the redundancy of a grammar—the same manipu-
lation as that used by Jamieson and Mewhort—
yields similar results in the SRT task.

EXPERIMENT 1

On each trial in the experiment, a target (ie., a
white disc) appeared in one of six locations on a
black computer Each location was
mapped to a key on the computer’s keyboard.
The participant identified the location of the
target, as quickly as possible, by pressing the corre-
sponding key. The location of successive targets
was determined by the rules of a grammar.
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We used three grammars to introduce three
degrees of predictability, or redundancy, into the
series of targets. If the effect of redundancy in
the grammar on performance in the SRT task par-
allels its effect on performance in the judgement-
of-grammaticality task, the time to identify the
location of the target should decrease across
trials, with the rate of the decrease an increasing
function of redundancy.

Method

Participants

A total of 36 students from the Queen’s University
undergraduate participant pool took part in the
study. Each participant was assigned randomly to
one of three conditions defined by an artificial
grammar. All participants reported normal or cor-
rected-to-normal vision.

Apparatus

The experiment was administered on a personal
computer equipped with a 17-in. monitor and
QWERTY keyboard. The experiment was admi-
nistered using software written in Turbo Pascal
7.0. To ensure accurate measurement of response
time, we used a modified version of Heathcote’s
(1988) timing and screen-control routines and
cleared the keyboard’s memory buffer before each
trial. To apply Heathcote’s routines, we conducted

the experiment under MS-DOS 6.1.

Table 1. Three transition grammars used in Experiment 1

Materials

The experiment included 837 trials. The first 37
trials were practice trials designed so that the
target moved once from each of the six locations
to each of the other six locations (including
itself). For the remaining 800 trials, the location
of successive targets was defined by the transition
probabilities described in the three grammars
shown in Table 1.

Each grammar in Table 1 shows the probabil-
ities with which the target moved from one location
to another on successive trials. In Table 1, the six
locations are numbered 1 through 6. In the leftmost
grammar in the table, if the target appeared in
Positions 1, 2, or 3 on trial 7, it appeared in
Locations 2, 3, and 4, respectively, on the succeed-
ing trial. If the target appeared in Positions 4, 5, or
6, on trial #, it appeared at one of two potential
locations on the succeeding trial (with equal
probability). In the middle grammar in the table,
the target could move from any of the locations
on trial 7 to one of two allowable locations on the
succeeding trial (with equal probability). In the
rightmost grammar in the table, the target could
move from any location on trial #» to one of
three others on the succeeding trial (with equal
probability). In all of the conditions, a target
could not reappear at the same location on consecu-
tive trials.

We created sequences of 800 experimental
trials by picking the first position at random and

Redundancy
.81 .61 .39

Successor Successor Successor
Position 1 2 3 4 5 6 1 2 4 5 6 1 2 3 4 5 6
1 1 1/2 1/2 1/3 1/3 1/3
2 1 1/2 1/2 1/3 1/3 1/3
3 1 1/2 1/2 1/3 1/3 1/3
4 1/2 1/2 1/2 1/2 1/3 1/3 1/3
5 1/2 1/2 1/2 1/2 1/3 1/3 1/3
6 12 1/2 1/2 1/2 1/3 1/3 1/3
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then selecting successive digits according to the
probabilities in the relevant grammar.

We quantified the amount of structure in each
grammar using the redundancy statistic G (e.g.,
Jamieson & Mewhort, 2005, 2009). G is computed
using Shannon and Weaver’s (1949) expression for
first-order sequential uncertainty:>

U=- Z Zf’ij log, pij»

i=1 j=1

where p;; denotes the probability of symbol ; follow-
ing symbol 7 in a sequence, and 7 is the number of
symbols in the grammar. The grammatical redun-
dancy of a target grammar was computed by
comparing its first-order sequential uncertainty
against the first-order sequential uncertainty of an
equivalent, but unconstrained, grammar:

U(Grammar)

G=1 U(Unconstrained)
Using a six-by-six transition matrix, an uncon-
strained grammar would have all transition probabil-
ities equal (i.e., each entry in the table would be 1/6).
G measures bigram structure associated with a
grammar of interest. For the three grammars
reading from left to right, G= .81, .61, and .39,
respectively.

Procedure
Participants were seated in front of a computer
with a monitor and a keyboard attached to it.

SRT LEARNING

The phrase “Press any key to begin ...” was
printed in white at the centre of the monitor.

On each trial, a white disc appeared at one of six
locations on the computer’s screen. As illustrated
in Figure 1, six squares, each marked by a white
border, identified the six locations at which the
target could appear. The task was to identify the
location of the target by pushing one of six
response keys. The six keys 5, 4, £ j, 4, and / on
the computer’s keyboard were mapped to the six
successive positions on the screen (moving from
left to right, respectively). Each participant used
the middle fingers (i.e., the ring, middle, and
index) of the left hand for responses s, d, and f
and used the corresponding fingers of the right
hand for responses j, 4, and /.

Before starting the eight blocks of experimen-
tal trials, the participant pressed a key on the
keyboard to initiate a block of practice trials.
On the participants’ keystroke, the screen was
cleared, and, after a 250-ms pause, the six
square borders were displayed on the computer
screen. The borders were arrayed horizontally
and were centred both horizontally and vertically
on the screen (see Figure 1). After a pause of
500 ms, the target appeared inside one of the
borders. The target remained on the screen
until the participant pressed one of the six
response keys. When the participant responded,
the target was cleared but the six borders
remained. The target reappeared 500 ms later at
another location. If the participant’s response
was wrong, a 150-Hz tone was sounded for the
first 100 ms of the 500-ms intertrial interval.

2 For an example with a number of equally likely stimuli, uncertainty, U, is computed as,

U = log, (N) = —log, (p)

where N is the number of stimulus alternatives, and p = 1/Nis the probability that each alternative will occur on a given trial. U'is
expressed in bits. To calculate mean uncertainty when the probabilities of events are unequal, the uncertainty of each event is
weighted by its probability, and the product is summed across all events—that is,

N

U= —pilog,pi,

i

where N refers to the number of events, and p; is the probability of event i (see Shannon & Weaver, 1949).
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s d f j k I

Figure 1. 4 diagram of the display presented to participants. The
target is shown on the screen in the third position from the left.
The response keys [s], [d], [f], [j], [k], [1]) were mapped to the
corresponding locations, but did not appear on the screen in the
experiment.

Testing continued until the participant had
completed the 37 practice trials. Following the
practice, the screen was cleared, and after a 1,000-
ms pause, “Press any key to begin .. .” was displayed
at the centre of the computer’s screen.

The participants were informed that the exper-
iment would be administered in eight blocks of
100 trials and that they would have an opportunity
to rest between blocks. The instructions asked the
participants to respond as quickly as possible
without sacrificing accuracy. The procedure for
the eight blocks of experimental trials was identical
to that in the practice session, except, of course, that
the sequence of target locations was determined by
the probabilities in the relevant grammar.

After the experiment, each participant was asked
if he or she had noticed anything about the
sequence. The experimenter prompted the partici-
pant again by noting that the sequence had been
constructed according to rules.

Results

The top panel in Figure 2 shows mean response
time (RT) as a function of practice and of gram-
matical redundancy. As is shown in the figure,
RT decreased linearly across practice in all three
groups with the pattern of results yielding a
reliable practice (linear) by redundancy (linear)
interaction, F(1, 33) = 14.94, n; = .15, p < .05.°
Mean accuracy across participants was uniform at

96% (SD = 2.04%) and was independent of both

practice, F(7, 231)=1.76, m;=.05, p> .05,
and redundancy, F(2, 33) =221, n; = .12,
p> .05 (both tests were assessed after applying
the Greenhouse—Geisser correction).

We compared performance for low- and high-
probability transitions in the G = .81 condition
where some transitions were determined (i.e.,
0-bit transitions in the first three rows in
Table 1) and others were not (i.e., 1-bit transitions
in the second three rows in Table 1). We
computed each participant’s mean RT for the
two types of transitions. Mean RT for the 0-bit
transitions (M = 357 ms, SE = 21 ms) was faster
than that for the 1-bit transitions (M = 390 ms,
SE=13ms), #11)=3.09, n°= .46, p<.05.
The greater the uncertainty, the slower partici-
pants were to identify the target’s location.

As is clear in the top panel in Figure 2, the par-
ticipants learned to use the sequential redundancy
of successive positions, and the rate of their learn-
ing was an increasing linear function of the gram-
mar’s redundancy. When questioned, however,
only 2 participants in the most highly constrained
condition (G = .81) reported that there were con-
tingencies to be learned. Neither of the 2 partici-
pants was explicit about the probability structure.
Hence, the present results confirm a pattern of
results associated with the implicit-learning view:
The participants capitalized on redundancy in suc-
cessive stimuli but they could not describe the
redundancy, and, indeed, most were effectively
unaware of it. The SRT procedure appears to
provide a strong case for automatic learning of
the structure across trials and, therefore, challenges
the claim that performance in implicit-learning
tasks can be understood in terms of retrieval.

UNDERSTANDING PERFORMANCE
IN THE SRT TASK

According to the implicit-learning view, people
abstract whatever rules underlie order in the

* Orthogonal trend coefficients for unequal intervals were computed using an algorithm suggested by Gaito (1965). Software to
compute the coefficients is available from the authors for Linux, Solaris, Macintosh-Intel, or 32-bit Windows machines.
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Figure 2. The top panel shows reaction time as a function of
practice and sequential redundancy. Practice is expressed in blocks
of 100 trials. The bottom panel shows simulation results:
iterations as a function of practice and sequential redundancy.
Error bars represent standard ervors. For the simulated results,
error bars are computed for n = 25.

chain of stimuli. Moreover, it is thought that a
separate implicit-learning system does so auto-
matically. Our position differs both on what is
learned and on how it is learned.

At the outset of the experiment, the partici-
pants are told of the mapping between target
position and the response. To respond correctly
when the target appears, they must remember
that mapping and press the appropriate button;
that is, they must remember the response associ-
ated with the current stimulus. Early in practice,
they have no alternative but to depend on the
stimulus-to-response mapping alone to guide
their response. As they develop experience in the
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task, however, a new and reliable source of
evidence about the response becomes available—
namely, the participant’s own memory of his or
her performance in the task.

What kind of information do participants store
about their own performance? The implicit-learn-
ing position claims that they learn rules that
describe the probability structure of the sequence
but cannot report the rules because the knowledge
is implicit. Stadler (1992, 1993, 1995), however,
has noted that learning in the SRT task is specific
to short runs of trials in the same way that priming
in word identification is specific to previously
studied stimuli (Jacoby, 1983), and learning in an
alphabet-arithmetic task is specific to the studied
problems (e.g., Logan, 1988). Our position is an
implementation of the same idea: We suggest
that people record an incomplete history of local
information about the task. The history includes
the participant’s response to each stimulus; it also
includes the context of that response—namely,
the response made on the previous trial—a pos-
ition consistent with Willingham’s (1999) demon-
stration that performance in the SRT task reflects
learning of trial-to-trial response contingencies.
Such a history—even if it were very incom-
plete—provides reliable information about the
current response because the sequence of stimuli
is predictable at the first order (see Stadler, 1992,
p- 319). Yet, because the history records a stream
of local events, it should be no surprise that it pro-
vides little global information about the rules
needed to generate the stimuli. Rather than postu-
lating an implicit system that abstracts the rules
underlying a chain of responses, then, we
propose that people use local information about
their own responses from their history of respond-
ing. To show that our position is competent to
accommodate data from the SRT task, we
implement the theory by adapting an established
model of human memory to it: Minerva 2, the
same model as that used by Jamieson and
Mewhort (2009) to understand performance in
the judgement-of-grammaticality task.

Minerva 2 (Hintzman, 1984, 1986, 1988, 1990)
was developed to understand the explicit-recognition
and judgement-of-frequency tasks (Hintzman, 1984,
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1988). It has since been applied to a wide range of
phenomena including categorization (Hintzman,
1986, 1988), confidence—accuracy inversions in
recognition memory (Clark, 1997), recognition
failure of recallable words (Hintzman, 1987), false
recognition in the Deese—Roediger—McDermott
paradigm (Arndt & Hirshman, 1998), likelihood
judgement (Dougherty, Gettys, & Ogden, 1999),
extrapolation in function learning (Kwantes &
Neal, 2006), speech perception (Goldinger, 1998),
word naming (Kwantes & Mewhort, 1999), and
access to semantic memory (Kwantes, 2005).
Finally, as noted earlier, Jamieson and Mewhort
(2009) showed that it handles judgement-
of-grammaticality data. In the next section, we

adapt Minerva 2 to the SRT task.

Minerva 2

Minerva 2 is a multitrace theory of memory. When
a participant studies an item, or a pair of items, the
event is encoded to memory as a unique trace.
In the model, a unique vector of 7 elements is
used to represent each item. Each vector element
takes one of two values: +1 or — 1 with equal
probability—that is, p(+1)=p(—1)=.5. An
association between two items (or between a cue
and a response, or an exemplar and a category
label) is represented by concatenating the constitu-
ent item vectors to form a new vector of larger
dimensionality.

Memory is a matrix with one row (vector) for
each studied event or association. Encoding an
event involves copying its vector to a new row in
the memory matrix. Encoding is sometimes
imperfect. The model accommodates imperfect
encoding by setting some vector elements to zero
(indicating that the element is indeterminate or
unknown). A parameter L controls the probability
with which an element is stored correctly. As L
increases, the quality of the encoded stimulus
improves. Minerva 2 treats forgetting as the
inverse of correct encoding; hence, reducing L
can be used to accommodate memory loss.

All retrieval is cued. A cue may refer to a com-
plete trace, as in item recognition, or to part of a
trace, as in cued recall. We consider Minerva 2’s
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retrieval mechanisms for the complete-trace
example first because those mechanisms are gener-
alized easily to the cued-recall example.

When a retrieval cue is presented, it activates
each trace in memory in proportion to its similarity
to the cue. The activation from all traces is aggre-
gated into a composite trace (called the echo). The
similarity of trace, 4, to the probe, P, is computed
using a vector cosine. Because the stimulus
vectors are composed of +1/—1 elements, the
vectors are normalized to 1; hence the cosine can
be computed:

S — 2 i By x M

n

where P;is the value of the sth feature in the probe,
Mj; is the value of jth feature of the ith row in
memory, and 7z is the number of features in the
comparison. Like the Pearson 7, the similarity of
the sth item to the probe, §;, is scaled to the inter-
val {—1, +1}. Similarity equals +1 when the trace
is identical to the probe, 0 when the trace is
orthogonal to the probe, and —1 when the trace
is opposite to the probe.

The ith trace’s activation, 4,, is the cube of its
similarity to the probe—that is,

A4 =83 1
The activation function exaggerates the differ-
ences in similarity between the probe and the
items in memory by attenuating the contribution
of exemplars to the echo that are dissimilar to
more so than those that are similar to the probe.
Note that using an odd-numbered exponent in
the activation function preserves the sign of the
argument, S,

The echo, C, is a vector obtained by
weighting each of the i=1...m traces in
memory by its activation and summing all » traces
into a composite,

C = zm:A,- x Mj.
=1
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The echo represents the composite of the infor-
mation in memory activated by the probe; it is
used to model cued-recall and categorization
experiments.

The echo’s intensity is computed by summing acti-
vation across the =1 ... m traces in memory,

The echo’s intensity, I, ranges between —m and m,
and it 1s a function of both the number of traces in
memory and the degree to which the traces match
the probe: If all traces in memory were identical to
the probe, I = m. The echo’s intensity measures the
activation triggered by the probe, and it is often
treated as an index of the probe’s familiarity with
respect to the studied material. Because the inten-
sity measure is summative, however, its range of
scores varies with the number of items stored in
memory and so is inappropriate for simulations
in which the number of traces varies—for
example, an experiment that involves learning
with practice (e.g., the SRT task). An alternative
measure that solves this problem is obtained by
normalizing the echo and computing the similarity
between it and the probe,

I:Z;ﬂpjxcj, 3

n

where P;is the value of the jth feature in the probe,
G, is the value of jth feature in the echo, and 7 is
the number of features in the vectors under com-
parison. Using this measure of echo intensity,
I=1 when the probe and the echo are identical,
I=0 when the probe and echo are orthogonal,
and I= —1 when the probe and the echo are
opposite. We use the measure of echo intensity
in Equation 3 throughout this paper.

To extend the model to the cued-recall
situation, consider an example in which each trace

SRT LEARNING

is composed of associated items so that features
J=1... krepresent features of the probe, and fea-
tures j= (%4 + 1)...n represent features of the
response. To retrieve a response to the probe, the
probe is submitted to memory with features
1...% filled in and features (44 1)...7 empty.
Because activation is applied to the entire trace,
however, the response information is activated
and, if the probe is paired sufficiently often with a
particular response, retrieves a clear representation
of that response into the echo. This is how
Minerva 2 accomplishes cued recall. We model
response selection in the SRT task using the oper-
ations that are used in Minerva 2 to model cued

recall.

Adapting Minerva to the SRT task

In Experiment 1, a white disc was shown in one of
six positions, and the participant was asked to
identify the disc’s position by pressing one of six
response keys. As participants practised the task,
their response time decreased, indicating that
they were able to speed the correct response.

To simulate the SRT task, we started by con-
structing 12 vectors, 1 to stand for each of the
six stimulus positions and for each of the six poss-
ible responses. Each vector was of dimensionality
20 with values of +1 or —1 selected at random
with p(+1) = p(—1) = .5.

When participants made a response, we
assume that they updated memory with a
record of the current stimulus, the response
required by that stimulus, and the context pro-
vided by their own response on the previous
trial. Hence, each trial was represented by a
vector of dimensionality 60 constructed by con-
catenating the vectors for the current stimulus
(8,), the response associated with that stimulus
(R;), and the response on the previous trial
(R(i_l))—that iS, Si//R(z'—l)//Ri, where//indi—
cates concatenation, and 7 identifies the 7th trial
in the series.*

4 In our simulations, we have limited the context information to the immediately preceding response. The decision to limit the
context was one of convenience; we are open to the possibility that a larger context might be required if second-, third-, or higher
order predictability were introduced into a sequence of stimuli (cf. Reed & Johnson, 1994; Remillard, 2008).
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To acknowledge the instructions given to the
participants  before starting the experiment
proper, we stocked memory with one example of
each S;)//Ri-1)//R¢) contingency with L = 1.
Then, prior to the simulation we stored trials cor-
responding to four practice blocks. Thereafter, we
presented the model with a sequence of stimuli
generated as it was in the target experiment. As
the experiment proceeded, we added a new row
to the memory matrix to record the events from
each trial.

Although each stimulus was visually distinct
and clear, a task of 800 trials is, we were told,
quite boring, and so it is unlikely that participants
encoded each event in complete detail.
Accordingly, we set the learning parameter to a
moderate value, L =.7. As a result, about 30%
of the elements in each string were indeterminate,
representing incomplete encoding of events.

When a stimulus is presented, we assume that
the participant attempts to retrieve the correct
response given a probe composed of the current
stimulus and the participant’s own response from
the previous trial. To do so, we applied Minerva
2’s mechanism for cued recall; that is, we used S;
// R(i—1y as a prompt to recover R; .

Minerva 2 does not have a mechanism with
which to simulate response time.> To estimate
response time, we borrowed an idea from the itera-
tive resonance model (IRM) and applied it to
Minerva’s retrieval mechanism for cued recall
(see Mewhort & Johns, 2005).

Both Minerva 2 and the IRM treat retrieval in
terms of a resonance metaphor (see Ratcliff, 1978;
Semon, 1909/1923). When a tuning fork is
sounded near an undamped piano, energy is trans-
ferred to the piano’s strings. The transfer is pro-
portional to the match in frequency between the
tuning fork and the strings of the piano. In
Minerva 2, activation, described by Equation 1,
describes resonance in memory produced by a
probe, and the echo is a summary of the activation.

As the energy in the strings dissipates, the mix of
sounds changes. In particular, the tone closest to the
frequency of the tuning fork increasingly dominates
the mix of tones. The IRM extends the resonance
metaphor across time. Initially, when the retrieval
probe is applied to memory, all items are activated,
but as retrieval proceeds, the contribution of the
item(s) most similar to the probe increasingly dom-
inates the echo. To implement the changes in the
contribution of the studied items to the echo
across time, the IRM computes a fresh echo at
each time step. On the first time step, the exponent
in the activation function (see Equation 1) was set
to 1; on successive iterations, the exponent in the
activation function was increased by 1. Increasing
the exponent exaggerated differences in similarity
of the probe to each trace. For that reason, retrieval
exaggerated contributions from traces most similar
to the probe. In terms of the IRM, Minerva’s acti-
vation function (Equation 1) matches the IRM’s
activation function at the third time step.

One can think of the changes in the echo in
terms of a ratio of signal to noise. The signal is
the contribution from the traces from the item(s)
most similar to the probe; contributions from
other traces constitute noise. Initially, the echo
contains information from many traces. The dom-
inance of one trace over the rest is determined by
the similarity of the stored traces to the cue. In
an extreme example, if the cue were orthogonal
to all traces but one, only the single nonorthogonal
trace would contribute to the echo. In this case, the
signal-to-noise ratio for information in the echo
would be 1.0. If the cue is similar to several differ-
ent traces, however, they will all contribute to the
echo (in proportion to their similarity to the
probe), and the signal-to-noise ratio for infor-
mation in the echo will be less than 1.0.
Increasing the exponent in the activation function
exaggerates differences in the similarity of the
probe to the traces in memory and, thereby,
increases the signal-to-noise ratio.

5 Minerva 2 has a mechanism, called deblurring, in which the echo retrieved is fed iteratively back into the system until the

response subtrace is clear enough to support a response. We tried to model performance with this mechanism but failed. Indeed,
as we increased the number of traces studied, when deblurring, the response subtrace became increasingly noisy rather than becoming

increasingly clear. Dienes (1992) reported the same problem.
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In the simulations that follow, we used the
IRM’s retrieval mechanism to home in on the
item(s) most similar to the probe.6 On the first
iteration, the exponent in the activation function
(see Equation 1) was set to 1; for each time step,
the exponent in the activation function was
increased by 1. In all cases, the sign of a similarity
score was preserved in the output of the activation
function (i.e., a negative similarity score produced
a negative activation score, and a positive similarity
score produced a positive activation score).
Increases to the exponent across iterations
increased the relative contribution of traces that
most closely matched the §;//R(;—1) values of the
probe; that is, increases to the exponent increased
the signal-to-noise ratio in the echo by forcing
retrieval to home in on those traces that best
matched the corresponding elements of the probe.

As the echo homed in on the traces that most
closely matched the §;//R(;—1) values of the probe,
it also homed in on the response information associ-
ated with the probe. When the response portion of
the echo was similar enough to one of the possible
responses, it was selected for report. We set a simi-
larity criterion of 2= .99.

The model’s retrieval time is based on the
number of iterations needed to select a response;
we used the number of iterations to predict reac-
tion time. To obtain stable estimates of perform-
ance, we averaged across 25 independent
simulations of the experiment.

The results of the simulation for Experiment 1
are shown in the bottom panel of Figure 2.
Simulated RT (expressed as mean number of

SRT LEARNING

iterations) decreased with practice. The rate of
learning increased the greater the sequential con-
straint in the grammar that was used to construct
the test sequence. Accuracy was at ceiling
throughout.

As is clear from the two panels of Figure 2, the
simulation captured the main features from the
empirical results, #* = .89. In addition, when we
examined performance on 0-bit versus 1-bit tran-
sitions within the series of trials, we found that
the 0-bit transitions were faster than the 1-bit tran-
sitions. The model anticipated the same pattern:
The mean number of iterations to retrieve the
correct response was smaller for 0-bit (M = 2.83)
than for 1-bit transitions (M = 4.11). Thus,
looking at the data overall (as in Figure 2) or at a
transition-to-transition perspective, the model cor-
rectly anticipated performance.”

We conclude that performance in the target
SRT task can be understood in terms of extra infor-
mation about the response that becomes available
from the participant’s noisy history of responding
to particular stimuli. The history includes the
local context of each response (i.c., the immediately
preceding response), and it provides a reliable
source of information to the extent that the
sequence of successive stimuli is predictable. In
short, learning in our SRT task does not require
an implicit system to abstract the rules. Instead,
learning can be understood in terms of the partici-
pant’s ability to retrieve useful information from his,
or her, history of responding.

Despite clear evidence of learning in the simu-
lation, our account explains why participants were

6 The IRM, described by Mewhort and Johns (2005), set the exponent on the initial time step to 0 and increased it by 1 on each
iteration; this differs from our practice of setting the initial time step to 1 and increasing it by 1 on each iteration. Their vectors were
composed of zeros and ones; ours were composed of —1s and +1s.

7 The model has only two free parameters—namely, L, the encoding quality parameter, and £, the decision criterion. The encod-
ing parameter, L, controls the quality of the representation in memory. If it is set to 1, learning is speeded: In Experiment 1, for
example, learning would be all but complete within the first block of trials. If it is set to a low value, the rate of learning is strongly
attenuated. Its influence is greatest for the low-redundancy sequences. The decision criterion, 4, controls the quality of information
retrieved needed to issue a decision. Decreasing the decision criterion speeds response time but increases the probability of an error
response. If the decision criterion is set to a very low value, accuracy suffers accordingly. In addition to the free parameters, the model
has a structural parameter—namely, the dimensionality of the vectors that represent each symbol. Decreasing the dimensionality
both reduces the rate of learning and increases the number of errors. The dimensionality parameter trades off with L, and all
three parameters interact. We selected parameter values so that the same values work in all the simulations. We could have modestly
better fits to each task, but we have little justification for changing the parameters across tasks.
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unable to articulate the series when prompted to
do so. The simulation is based on the idea that
people retrieve information about the current
response given a probe—that is, they seek R;
given S;//R;—1y as a prompt. Suppose, after 800
trials, that an experimenter were to invite the par-
ticipant to provide R; with only, R(;_1) as a cue—
that is, with only half the usual cue. Performance
with half the cue would be better than chance.
For an example based on the probabilities used
by the middle redundancy (G = .61), a participant
should be able to narrow the next response to two
possible positions; the probability of guessing the
correct response is 1 in 2—that is,
pleorrect;) =.5. If we assume a correct first
response, the participant should be able to
narrow the next response to two possible positions,
and the probability of guessing correctly is again 1
in 2—that is, p(correct,) = .52 =.25. The prob-
ability of guessing the third position is
5% =.125. Generalizing the example, the prob-
ability of guessing successive items is a decreasing
geometric function. Although it is better than
chance, performance would appear dismal to
anyone who thought it possible that the partici-
pant might be able to recite the sequence, even
though performance on the last few of the 800
trials provided ample evidence of learning. In
short, as the calculation of chance during half-
prompted recall illustrates, the model anticipates
a participant’s inability to recall the series even as
it demonstrates clear evidence of learning. The
combination is, of course, the pattern underlying
the argument for the two-systems position.

Applying Minerva 2 to other SRT

experiments

In our experiment, the sequences were generated
according to an artificial grammar (i.e., probabil-
istically). In contrast, many experiments with the
SRT procedure present a short sequence that is
repeated many times over the experiment (e.g.,
Nissen & Bullemer, 1987; Stadler, 1992; Stadler
& Neely, 1997). The fact that we gave partici-
pants probabilistic rather than repeated sequences
opens the possibility that our explanation does
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not apply to those standard studies from the
literature. In particular, if, as the implicit-learning
view holds, performance in the SRT task reflects
participants’ learning a short repeated sequence
(either explicitly or implicitly), then our model is
ill equipped to predict performance. To evaluate
our account against standard results, we test it
against a set of experiments that use repeated
sequences.

Nissen and Bullemer (1987; Experiment 1)

Nissen and Bullemer’s (1987) paper is the classic
application of the SRT task to implicit learning.
Because it is the classic demonstration it provides
a rational point of departure.

On each trial in Nissen and Bullemer’s (1987)
experiment, a target (an asterisk) appeared at one
of four locations on a computer screen, and the
participant pressed a corresponding key to identify
its location. The experiment included eight blocks
of 100 trials each. In a control condition, the target
appeared in a random sequence. In an experimen-
tal condition, the target occurred in a repeated
sequence of 10 locations. Designating the 4
locations as A, B, C, and D from left to right,
the sequence followed the pattern D-B-C-A-
C-B-D-C-B-A.

Mean performance of Nissen and Bullemer’s
(1987) participants is shown in the top panel of
Figure 3. Reaction time to locate a target
decreased at a faster rate when participants were
presented with the structured sequence than
when participants were presented with the
random sequence. The results have been taken as
evidence that participants learned the short
repeated sequence; because they could not report
the sequence in its entirety, some have argued
that the participants learned the sequence
implicitly. By our account, however, the advantage
for the repeated sequence does not reflect implicit
knowledge of the sequence but, rather, a benefit in
retrieval due to a growing and cumulative history
of trial-based responding.

To test our account, we applied our version of
Minerva 2 to Nissen and Bullemer’s (1987)
sequences. The details of the simulation were
unchanged from before, except that, of course,
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Figure 3. The top panel shows reaction time as a function of
practice and structure. Practice is expressed in blocks of 100 trial.
The bottom panel shows the simulation of the experiment. Error
bars for the simulated results are standard errors, n = 25.
Redrawn from Cognitive Psychology, 19, M. J. Nissen and
P. Bullemer, ‘“Attentional requirements of learning: Evidence
Sfrom performance measures”, p. 8, © 1987, with permission from
Elsevier.

the target sequence was taken from Nissen and
Bullemer (1987).

Simulated performance is shown in the
bottom panel of Figure 3. The simulation repro-
duced the main empirical trend from Nissen and
Bullemer’s (1987) study: The mean number of
iterations to retrieve the correct response to the
probe decreased at a faster rate when the model
was presented with the repeated sequence than
when it was presented with the random
sequence. To quantify the match between the
simulated and observed performance, we com-
puted a correlation between mean RT in the
observed data and mean number of iterations in
the simulation, 7* = .98.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2009, 62 (9)

SRT LEARNING

The model handled learning of a repeated
sequence as well as it handled learning of a probabil-
istic one. Memory for the events from individual
trials was sufficient to reproduce the learning advan-
tage for a repeated sequence, over a random
sequence. The simulation reinforces our conclusion
that performance in the SRT task can be understood
as a growing reduction of the signal-to-noise ratio
in the echo with practice, without invoking a
separate implicit learning mechanism.

Although Nissen and Bullemer’s (1987) exper-
iment is the classic demonstration of learning in
the SRT task, it presents a general distinction:
Learning is better for a redundant sequence than
for a random one. Ideally, we would like to test
our model against data that compare learning of
repeated sequences that vary in redundancy.

Stadler (1992; Experiment 1)

Stadler (1992) tested learning of sequences that
varied in redundancy. In his experiment, the
target (an asterisk) appeared at one of four
locations and remained until the participant
pressed a corresponding response key. The screen
was cleared for a short time following each
response, after which the target appeared at
another location. The experiment included eight
blocks of 100 trials.

Stadler (1992) varied redundancy of sequences
in four conditions. In a random condition, the
target followed a random pattern across the 800
trials, subject to the constraint that the target
could not appear at the same location on consecu-
tive trials. The other three conditions introduced
redundancy into the series by repeating a specific
sequence of locations. Table 2 shows Stadler’s
(1992) low-, medium-, and high-redundancy
sequences. For completeness, the redundancies
from the zero through third orders are shown
for each of the four sequences; in this context,
order refers to the number of successive trials
involved in the prediction. Zero-order redun-
dancy measures predictability of the target on a
single trial independently of events from preced-
ing trials. First-order redundancy measures pre-
dictability depending on the immediately
preceding trial (i.e., the same order of redundancy
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Table 2. Stadler’s (1992; Experiment 1) sequences and their associated redundancies

Order of redundancy
Condition Sequence Zero First Second Third
Random .00 .10 .14 .16
Low redundancy BDBCABADAC .01 .06 44 .58
Medium redundancy BDBCABCDBC .07 .33 A7 .68
High redundancy BDBCABDBCD .07 .38 51 .60

Note: The random sequence is not shown because it varied from simulation to simulation. Notice that the first six events in the low-,
medium-, and high-redundancy sequences are identical (BDBCAB ...). Table adapted from “Statistical structure and implicit
serial learning”, by M. A. Stadler, 1992, Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, p. 327. © 1992 by
the American Psychological Association. Adapted with permission.

as that used in Experiment 1). Second-order
redundancy measures predictability of the target
depending on the preceding two trials. Third-
order redundancy measures predictability
depending on the preceding three trials (see
Attneave, 1959, for a worked example). For
each of the four orders, if redundancy is equal
to 0, the target is unpredictable at that order; if
redundancy is equal to 1, the target is perfectly
predictable at that order.

The top panel of Figure 4 shows performance
of Stadler’s (1992) participants (redrawn from
the top panel of his Figure 1). The open circles
show performance with the random sequence;
closed shapes show performance with the redun-
dant sequences. Participants’ RT decreased sys-
tematically across the first seven blocks of trials,
and the rate of learning increased systematically
with redundancy. In Block 8, when the sequence
was made random, RT increased sharply—the
“negative transfer effect”—with the magnitude of
the cost an increasing function of redundancy:
210ms, 152ms, 72ms, and — 16ms for
the high-redundancy, medium-redundancy, low-
redundancy, and random conditions, respectively.

Stadler’s (1992) results provide two challenges for
our account. First, although we showed that our
model is sensitive to differences in the redundancy
of a probabilistic sequence, it remains to be seen
whether it is sensitive to differences in redundancy
of repeated sequences. Secondly, we have not
yet tested whether the model handles a cost to
performance when transferred to a random sequence;
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hence, it remains to be seen whether the model pre-
dicts the negative-transfer effect shown in Figure 4.
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Figure 4. The top panel shows reaction time as a function of
practice and redundancy. The bottom panel shows the simulation
of the experiment. Error bars for the simulation are standard
errors, n=25. Redrawn from the Journal of Experimental
Psychology: Learning, Memory, and Cognition, 18, M. A.
Stadler, “Statistical structure and implicit serial learning’, p. 322,
© 1992 by the American Psychological Association. Adapted with

permission.
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We applied our version of Minerva 2 to
Stadler’s (1992) task. The details of the simulation
were unchanged from the earlier simulations
except that the sequences presented to the model
were taken from Stadler.

The results of the simulation are shown in the
bottom panel of Figure 4. As shown, the model
reproduced the main empirical trends: Both the
rate of learning and the magnitude of the negative
transfer effect increased systematically as a func-
tion of redundancy, 7 = .89. The fit is very good
given Stadler’s concerns about the variability in
baseline RT that his participants exhibited across
the four conditions.

In his paper, Stadler (1992, p. 320) noted that
the redundancy of the repeated sequence used by
Nissen and Bullemer (1987) fell between that of
the low- and medium- redundancy sequences
that he used. Consistent with Stadler’s (1992)
note, simulated learning with the Nissen and
Bullemer sequence (open circles in the bottom
panel of Figure 3) does, in fact, fall intermediate
to simulated learning with Stadler’s low- and
medium-redundancy sequences (closed circles
and closed triangles, respectively, in the bottom
panel of Figure 4).

Our version of Minerva 2 reproduced Stadler’s
(1992) results with good fidelity. Memory for the
events from individual trials is sufficient to repro-
duce differences in the rate of learning and the size
of the negative transfer effect, both as a function of
sequence redundancy. Negative transfer occurred

SRT LEARNING

in the simulation because switching to a random
sequence of trials, after having practised a repeated
sequence, introduced novel trial-to-trial response
contingencies into memory. Introducing those
novel contingencies had the effect of increasing
noise in the echo forcing a larger number of iter-
ations to reach the decision criterion. In the next
section we test the model against an experiment
that provides two additional challenges to our
model.

Stadler and Neely (1997; Experiment 2)

The limit on peoples’ ability to recall sequences of
items is recognized widely; indeed, the digit span
is a standard component of 1Q_tests. Taking this
limit as a hallmark of explicit memory, Stadler
and Neely (1997) asked whether implicit learning
is free of such limits by manipulating sequence
length and sequence structure in a standard SRT
task.

In their experiment, the stimuli were white
rectangles presented on a black background. On
each trial, a rectangle appeared at one of four
locations. The participant’s task was to identify
the location of the rectangle by pressing a corre-
sponding key on a computer keyboard.

Table 3 shows the sequences that Stadler and
Neely (1997) used to define their six conditions
(as well as corresponding measures of redundancy).
The sequences differ in two ways: sequence redun-
dancy (low or high) and sequence length (8-, 12-,
and 16-trial patterns). The classification of a

Table 3. Stadler and Neely’s (1997; Experiment 2) sequences and their associated redundancies

Order of redundancy
Sequence length Redundancy Sequence Zero First Second Third
8-trial Low ABCDCADB .00 25 .50 .63
High ABCDCBCD .05 .38 .54 .63
12-trial Low ABCDBDCABCDB .02 27 49 .59
High ABCDBABCBCDB .06 37 .54 .64
16-trial Low ABCDACABDCABCDAC .02 27 49 .59
High ABCDABCACDABCACD .02 .36 .55 .64

Note: The random sequence interpolated into the sequence is not shown. Table adapted from “Effects of sequence length and
structure on implicit serial learning”, by M. A. Stadler and C. B. Neely, 1997, Psychological Research | Psychologische Forschung, 60,
p- 17, © 1997. Adapted with kind permission of Springer Science + Business Media.
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sequence as high or low redundancy was made
relative only to the redundancy of the alternate
sequence of the same length.

In the experiment, participants received a total
of nine blocks of trials. The first five blocks of
trials involved a repeated sequence, the sixth
block involved a random sequence, the seventh
and eighth blocks reintroduced the repeated
sequence, and a final block involved a new
random sequence. Each block included 10 con-
secutive presentations of the relevant sequence;
thus, for sequences with 8-, 12-, and 16-trials, a
block included 80, 120, and 160 trials, respectively.

Figure 5 presents a facsimile of the mean
number of milliseconds that participants took to
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Figure 5. Reaction time as a function of practice, repetition
pattern, and structure (high/low). Standard errors were not
reported in the original manuscript. Redrawn from Psychological
Research | Psychologische Forschung, 60, 1997, p. 19, “Effects of
sequence length and structure on implicit serial learning”, M. A.
Stadler and C. B. Neely, © 1997, with kind permission of
Springer Science + Business Media.
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locate the target as a function of practice, sequence
length, and redundancy (redrawn from Stadler &
Neely’s, 1997, Figure 2). Performance in the top,
middle, and bottom panels of Figure 5 corresponds
to the 8-, 12-, and 16-trial patterns in Table 3,
respectively. As shown, RT decreased in blocks
with the repeated sequence, increased sharply in
blocks with the random sequence (Block 6 and
again in Block 9), and was systematically better
for the high- than for the low-redundancy
patterns.

Stadler and Neely’s (1997) results pose two
challenges to our model. First, when learning is
measured in terms of the difference between per-
formance on the first block of random trials
(Block 6) and on the preceding block of repeated
trials (Block 5), it appears as if “learning actually
increased as [sequence] length increased” (p. 20).
Hence, as anticipated by the implicit-learning
view, performance in the SRT task does not
appear to obey the same capacity limitation as
that for explicit recall (e.g., digit span): If recall
is limited to 7 + 2 items (Miller, 1956), there
should be a cost rather than a benefit to learning
as sequence length is increased. Stadler and
Neely’s results, then, appear to provide strong evi-
dence for a fundamental difference between
implicit and explicit learning. From our perspec-
tive, however, there is no conflict. Rather,
speeded responding in the SRT task reflects
facilitation in retrieval as the trial-based history
of responding cumulates in memory.

Second, following a block of random trials
(Block 6) people show a rapid and full recovery
when the repeated sequence is reintroduced
(Block 7). Rapid and full recovery is problematic
for some models of learning: a phenomenon that
is known as catastrophic interference (McClosky
& Cohen, 1989; Mewhort, 1990; Ratcliff, 1990).
Because we did not test recovery from negative
transfer in our previous simulations, it remains
an open question whether the model recovers
when the repeated sequence is reintroduced.

To test whether our account handles the chal-
lenges posed by Stadler and Neely’s (1997) study,
we applied our version of Minerva 2 to their
design. The details of the simulation were the
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same as before except that the sequences were
based on the ones from Table 3.

The results of the simulation are presented in
Figure 6. The simulation captured the three
main trends from Stadler and Neely's (1997)
experiment: RT decreased across trials in blocks
with the repeated sequence, increased sharply in
blocks with the random trials (Block 6 and again
in Block 9), and was systematically better for the
high- than for the low-redundancy patterns,
#”=.92. We conclude that retrieval from
memory for the events from individual trials was
sufficient to predict learning in Stadler and
Neely’s experiment.

As we noted earlier, Stadler and Neely’s (1997)
experiment provided two challenges to our pos-
ition. The first challenge concerned an apparent
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Figure 6. Simulated reaction time in Stadler and Neely’s (1997)
Experiment 2 as a function of practice, repetition pattern, and
structure (| big/y/ low). Error bars are standard errors, n = 25.
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discrepancy in the capacity limitation of explicit
recall (e.g., a digit span task) and an apparent
reversal from that limitation in an implicit-
learning task (e.g., SRT performance). We repro-
duced the apparent reversal using a cued-recall
mechanism, without invoking an implicit-learning
system. We did not need to include an additional
mechanism to capture Stadler and Neely’s data.
The second challenge to our position was the dem-
onstration of rapid and full recovery of learning
when the repeated sequence was reintroduced.
Our version of Minerva 2 recovered rapidly and
fully from negative transfer without any modifi-
cation or extension. We conclude that the model
does not suffer from catastrophic interference.
The simulations reinforce our previous con-
clusion: Performance in the SRT task can be
understood as facilitation at retrieval that
emerges from the participant’s growing history of
his, or her, own responses to particular stimuli

(cf. Willingham, 1999).

Hyman (1953)

So far, we have discussed the SRT task in terms of
the implicit-learning issue, a frame introduced by
Nissen and Bullemer (1987). The same task was
used three decades earlier, however, to address a
different issue: the time required to execute a
mental process (e.g., see Fitts & Posner, 1967,
chap. 6). In this context, the participants were
given extensive practice, the probability structure
was described, and the task was learned to a cri-
terion of perfect performance. From the implicit-
learning perspective, learning such a regime could
hardly be called implicit. However, our claim to
understand performance in tasks thought to tap
an implicit-learning system rests on the assumption
that the mechanisms of the model work when
applied to an explicit-learning task. If that assump-
tion is sound, the model should capture examples of
SRT performance drawn from explicit-learning
tasks, such as those that examined the time to
execute a deliberate mental process.

In an early experiment on speeded choice,
Merkel (1885) reported a logarithmic increase in
response latency as function of the number of
stimuli to be identified. Not much was made of
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the result, however, until Hick (1952) interpreted
the relation in terms of communication theory. In
his study, Hick used an array of lights; each light
was associated with a unique response. On each
trial, one of the lights was brightened, and the par-
ticipant identified the light as quickly as possible
(see Reynolds, 2004, for a photograph of Hick’s
equipment). Hick systematically varied the
number of lights and replicated Merkel’s findings.
Instead of plotting response latency as a function
of the number of alternatives, however, Hick
plotted response latency as a function of the uncer-
tainty associated with the number of stimulus
alternatives.

Hick (1952) interpreted the linear latency—
uncertainty relation in terms of a series of binary
decisions (see also Swanson & Briggs, 1969).
When uncertainty is measured in bits, it specifies
the minimum number of optimal binary
questions—questions that each eliminate half the
options and that can be answered by a yes or
no—required to specify a stimulus uniquely from
a set of alternatives. With that idea in mind,
Hick proposed that the latency—uncertainty
relation reflected the time that participants
needed to compute the decisions.

Uncertainty associated with a fixed number of
alternatives can be reduced by using some alterna-
tives more frequently than others or, as illustrated
in the SRT tasks examined earlier, by introducing
sequential dependencies among the alternatives.
For example, if two of four alternatives each occur
40% of the time, and the other two each occur
10% of the time, uncertainty is reduced from the
2.0 bits associated with four equally likely alterna-
tives to 1.722 bits. If response latency is an increas-
ing function of uncertainty, reducing uncertainty
should yield faster responding.

Hyman (1953) tested Hick’s (1952) claim that
response latency is related to uncertainty by manip-
ulating the number of equally probable stimuli
(Experiment 1), the relative frequencies with
which the stimuli occurred (Experiment 2), and

the sequential dependencies among occurrences of
successive stimuli (Experiment 3). He reasoned
that if uncertainty predicts response latency, the
data should fall on the same function regardless of
how the predictability was introduced.

In Hyman’s (1953) task, the stimuli were eight
lights taken from the corners of a six-by-six
matrix: four lights from the outer corners of the
full matrix and four from the inner four-by-four
matrix. He taught the participants to associate
each light with a unique syllable: Bun, Boo, Bee,
Bore, By, Bix, Bev, and Bate. Once participants
had learned to associate each light with its response,
they named the lights in a speeded task under 24
uncertainty conditions (8 conditions for each of
three conceptually separate experiments that were
run concurrently). The procedure on each trial
was common to all conditions: A light was brigh-
tened, and the participant named it as quickly as
possible by saying the associated syllable.

The 24 uncertainty conditions were adminis-
tered to 4 participants who each completed 40
experimental sessions run over a 3-month period.
To avoid the problem of interpreting response
latencies contaminated by a speed—accuracy trade-
off, the data were taken from error-free blocks of
approximately 125 trials (the exact number
depended on the uncertainty condition). To
obtain error-free performance and to avoid a shift
in performance reflecting sudden insight into the
structure of a condition—a clear departure from
the procedure in SRT studies of implicit learn-
ing—Hyman (1953) described the probability
structure for each condition to the participant,
and he gave them extensive practice with each con-
dition (1 participant practised naming the lights for
1 month before beginning the experiment). The
details of the sequences that Hyman presented to
participants can be found in his Tables 2 and 3.

The results of Hyman’s (1953) experiment are
reproduced in Figure 7.8 Each panel shows
response latency as a function of stimulus uncer-
tainty for 1 of his 4 participants. As is clear in

8 There is an error in Hyman’s (1953) figure. The panel for participant L.S. shows nine data points for Experiment 2 and seven for
Experiment 1. The data point at U = 2.81 bits for Experiment 2 should be attributed to Experiment 1. We fixed the error in Figure 7.
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Figure 7, response latency was a linear function of
uncertainty, regardless of how predictability was
introduced. The relation plotted in Figure 7 is
widely known as the Hick—Hyman law. An impli-
cation of the Hick—Hyman law (and of communi-
cation theory generally) is that a stimulus’s role in

guiding performance depends on how people treat
it in relation to its alternatives, not on its charac-
teristics as a stand-alone event (Garner, 1962,
1974; Pomerantz & Lockhead, 1991).°

Hyman’s (1953) classic experiment provides an
interesting test for our explanation of performance

? Others have argued that Hick’s results reflect a strategy based on a speed—accuracy trade-off (Fitts, 1966; see also Fitts &
Posner, 1967). Because the chance of a response error increases with the number of response alternatives and because the participants
were given opportunity to note the number of alternatives, they may have delayed their response conditional on the number of
alternatives to ensure that they respond correctly. Usher, Olami, and McLelland (2002) have worked out the details of the trade-
off idea in the context of a diffusion-based information accumulation model (see Brown & Heathcote, 2005, for a review of infor-
mation accumulation models). Although their account handles Hick’s data successfully, the trade-off idea has no way to anticipate
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in the SRT task. If the explanation we have devel-
oped is consistent with performance when partici-
pants are informed of contingencies in the
stimulus series, our adaptation of Minerva 2
should be capable of fitting performance in the
classic experiment.

To simulate Hyman’s (1953) experiment, we
set L=1. We assumed perfect encoding to
acknowledge the large amount of practice given
to the observers. In addition, for the 24 separate
simulations (1 for each of the 24 contingency con-
ditions), we stocked memory with all eight poss-
ible stimulus—response pairs and with the
stimulus—response pairs for each of the 24 uncer-
tainty conditions (but with an empty subfield
for the previous response). We stocked memory
in this way so that each of the 24 separate contin-
gency conditions would start with the same basic
knowledge of the task. Before conducting a simu-
lation, we gave the model practice with a sequence
of 500 trials in which the eight stimulus alterna-
tives were presented and followed one another
randomly. The practice was intended to acknowl-
edge the several months of practice naming the
lights before data were taken in Hyman’s exper-
iments. For each of the 500 practice trials, we
recorded all three subfields in each trace in
memory. After practice, we ran a full block of
500 trials under the conditions appropriate to the
uncertainty condition.

We ran each of the 24 simulations four times as
if they represented 4 different participants. On
each of the four replications, we generated fresh
random vectors for the stimuli and responses.
Hence, variability among the four pseudopartici-
pants illustrates the variability in the model
inherent in our use of random vectors to represent
the events in the experiment.

Figure 8 shows the results of the simulations.
Points corresponding to conditions in Hyman’s
Experiments 1, 2, and 3 are shown by circles,

squares, and triangles, respectively. Simulated
performance was error free (as were the data in
Hyman’s task). Each panel in the figure shows
the data for one pseudoparticipant. As is clear,
each pseudoparticipant showed the same pattern
of results: Simulated response time was an
increasing linear function of stimulus uncertainty,
the same pattern as that demonstrated by
Hyman’s (1953) participants. We obtained
RT estimates of both observed and simulated per-
formance in each of the 24 conditions in Hyman’s
study. The fit for the simulated and observed
means computed across the 24 means was high,
7 = .89.

As before, performance in the SRT task can be
understood in terms of information about the
correct response that becomes available from the
participant’s history of responding to particular
stimuli. The history includes the local context of
each response (i.e., the immediately preceding
response), and it provides a reliable source of infor-
mation to the extent that the sequence of succes-
sive stimuli is predictable. Learning in the SRT
task does not require an implicit system to abstract
the rules. Instead, it can be understood in terms of
the participant’s ability to retrieve useful infor-
mation from his or her history of responding.
The same principles extend to an explanation of
speeded choice when participants are fully aware
of contingencies.

Reflecting on 50 years of research in psychology,
Luce (2003) noted that the early successes of infor-
mation theory led many to conclude that a very
deep truth had been discovered. He argued that
information theory has not lived up to its promise
and remained pessimistic for its future. The
Hick—Hyman law illustrates the dilemma nicely.
Uncertainty predicts response latency, but predic-
tion, by itself, does not explain anything.

Unlike Luce (2003), we think that information
theory has an important future in psychology

changes in RT based on sequential dependencies, as in Hyman’s data. To make the trade-off idea work for Hyman’s task, one would
have to suppose that participants adjust response times conditional on sequential dependencies. The problem is that there are no cues

to the dependencies equivalent the number of alternatives in Hick’s task. In short, when applied to the Hick—Hyman law, the trade-
off idea begs the question. Hence, we see no way that the speed—accuracy trade-off idea could handle Hyman’s (1953) demonstration
that stimulus uncertainty, not number of stimuli, predicts response latency.
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because it quantifies structure remarkably well
(e.g., Jamieson & Mewhort, 2005, 2009;
Pothos & Bailey, 1999; Stadler, 1992; Stadler &
Neely, 1997; Tulving, 1962). That said, we
concur with Luce that the theory has not yet
lived up to its promise. We see two main
reasons. First, the early authorities confused pre-
diction for explanation based on a new metric—
information measured in bits. The ability to
quantify structure is a critical first step for under-
standing its relation to performance, but an

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2009, 62 (9)

explanation requires a mechanism to link structure
to behaviour. Secondly, the early authorities ident-
ified the wrong locus at which to search for a
mechanism. Namely, they framed the problem as
a perceptual issue: Hake and Hyman’s (1953)
companion paper to Hyman’s (1953) paper, for
example, was entitled “Perception of the statistical
structure of a random series of binary symbols”. As
the present simulation illustrates, the use of stat-
istical structure reflects what we know and how
we retrieve information from memory. The
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mechanism responsible for the use of redundancy
in stimuli is memorial, not perceptual. Indeed,
when an SRT task is run so that the response
can be selected without having to look it up from
memory, contingencies in the series no longer

affect response time (Kveraga, Boucher, &
Hughes, 2002).

GENERAL DISCUSSION

As participants practise identifying targets in a
redundant series, their response time decreases.
Because the participants cannot characterize the
rules that make the sequence redundant or antici-
pate the next items in the series, even after hun-
dreds of practice trials, the learning implied by
speeded response time is taken widely to reflect
implicit knowledge of the structure in the
sequence. We have confirmed the standard
results in a new experiment and have adapted an
exemplar model of retrieval from memory to
understand performance in it. The model provided
a close fit to performance in our target experiment
and experiments conducted in other labs.

According to the model, after each response,
participants store a trace of the event that com-
prises the current stimulus, the response associated
with it, and the context provided by an immedi-
ately preceding response. When the next stimulus
is presented, the participants use it to retrieve the
correct response. As they practise the task,
the redundancy of the series provides extra infor-
mation pointing to the correct response, and the
extra information is responsible for the decrease
in response time.

The model handled performance with materials
constructed using simple sequential grammars and
using a repeated series. The fit to our own exper-
iment, and to the results of Nissen and Bullemer
(1987), Stadler, (1997), and Stadler and Neely
(1997), were all obtained without changing rep-
resentation, encoding, or retrieval assumptions in
the model. The same model also accommodated
the long-established linear relation between
response time and stimulus uncertainty, a function

known as the Hick—Hyman law.
1778

We conclude that learning in a SRT task does
not point to a specialized implicit learning
system. Instead, we suggest that participants use
very local memory for events to speed responding.
The larger implication is that performance in the
SRT task can be explained by the same principles
used in explicit-memory tasks. In an earlier paper
(Jamieson & Mewhort, 2009), we showed that
the principles also accommodate performance in
a judgement-of-grammaticality task.

Stadler argued in 1992 that the judgement-of-
grammaticality and the SRT task might be accom-
modated by the same representation assumptions
and learning operations. The work presented
here confirms  Stadler’s (1992) position:
Performance in both tasks can be understood by
storage of events from a single trial and parallel
retrieval from memory. The present work takes
his argument one step further by showing that
the representation and retrieval assumptions are
the same as those needed to accommodate a
number of other heretofore seemingly unrelated
learning and remembering behaviours to which
Minerva 2 has been applied.

We have modelled performance as a process by
which information retrieved from memory is
clarified by an increasingly trace-specific search
over time. By contrast, models of RT are often
based on the idea that decision depends on
information accumulated across time (e.g.,
Brown & Heathcote, 2005). Information accumu-
lation models were developed in the context of
perceptual decisions (e.g., Ratcliff, 2006; Vickers,
1970). The basic idea is that the perceptual
system provides a signal that is too weak to
support an immediate decision. As a result, the
signal must be cumulated (by resampling) until
sufficient evidence is obtained. Specific models
based on the evidence-resampling idea successfully
accommodate a variety of phenomena including
the shape of the RT distribution and speed—
accuracy trade-off. To date, however, none have
described how the resampling idea could accom-
modate redundancy in a series of stimuli.

It might be attractive, therefore, to combine
elements of the present model with elements of
the resampling idea. The idea would be to create
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a hybrid that could inherit the best properties of
both its parents.

A hybrid model is clearly an idea that deserves
to be explored. Development of the idea,
however, is well beyond the scope of the present
work. The present simulations are sufficient to
make our main point: Performance in the SRT
task does not require an implicit system to
abstract rules underlying redundancy. That said,
a hybrid model might be too much of a marriage
of convenience. First, the resampling idea seems
better suited to a perceptual example than to a mem-
orial one. It is easy to imagine that a perceptual
transducer generates a signal that is too weak to
support an immediate decision. As illustrated in
Experiment 1, and in the other examples explored
here, however, the initial evidence was strong
enough to support error-free performance.
Nevertheless, there was a clear performance gain
as a function of practice and stimulus redundancy.
Such a gain in performance does not map easily
onto the idea of a weak signal that is gradually
strengthened until it supports a decision. Rather,
the gain suggests a strong initial signal that was
made even stronger when predictability was intro-
duced into the sequence (and sufficient practice
allowed the participant to use it). In our account,
stimulus redundancy helps performance because it
modifies the rate at which the signal-to-noise level
reaches criterion during retrieval: Redundancy
increases the signal-to-noise ratio in the echo by
reducing the contribution of traces that predict
opposing responses to the probe. Our simulations
are based on noise reduction during retrieval
whereas the resampling models are based on signal
amplification during signal accumulation. It is not
clear whether the two ideas should be combined,
and, to the extent that they are thought to conflict,
it is certainly not clear what experimental evidence
might distinguish the two positions.

Throughout, we used sequences with first-order
sequential redundancy. The model can be extended
to handle higher order redundancies. There is some
evidence that the model already handles second-
order sequential structure, but our examples of
second-order sequential structure are confounded
with lower order structure, a problem almost
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always found in nature. Nevertheless, we do not
wish to make a too-strong claim regarding higher
order contingencies. Remillard (2008) has recently
unconfounded orders of structure and thereby
extended the kind of constraint that can be used
in SRT tasks. We are currently testing the model
to see whether we can extend it to materials
based on Remillard’s methods.

In a thoughtful and comprehensive review,
Cleeremans and Dienes (2008) focused attention
on recently developed computational models of
implicit learning. It is informative to highlight the
main difference between our account for the SRT
task and the accounts that they reviewed.
Although the details differ, virtually all of the
other models focus on how the subject can learn
the series as a series. In effect, many models treat
the SRT task as an example of an immediate serial
recall task. In our model, participants do not learn
anything about the series as a series; instead, they
use local information about their own behaviour.
Local information is sufficient to reduce response
time across trials, but it is insufficient to allow a par-
ticipant to recite the series when prompted.

The contrast in approaches highlights one of
our main points. Our simulations show how per-
formance in SRT tasks can be understood
without invoking two separate learning systems:
Participants know the mapping of the stimulus
to the response, and they retrieve the response to
the current probe. The speed of retrieval improves
because the structure in the series restricts the
information contributed by competing responses.
The models reviewed by Cleeremans and Dienes
(2008) also simulate performance, but, impor-
tantly, they do so by first accepting the idea of
two learning systems and the idea that learning
develops a representation of the rules that
underlies the sequence: Cleeremans, Servan-
Schreiber, and McClelland (1989) showed that a
recurrent network trained on grammatical strings
develops a pattern of activation on its hidden
units that corresponds to the grammar (see also
Perruchet & Pacton, 2007).

How can we distinguish our position from the
position reviewed by Cleeremans and Dienes

(2008)? One strategy would be to the fit
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competing accounts to the same data and to select
the winner based on a goodness-of-fit criterion.
However, given that both classes of model
predict learning, a decision based on goodness of
fit is unlikely to convince anyone. Rather, the
question is an empirical one: We must identify
conflicting predictions from the two accounts
and then test the predictions to choose which
view is correct.

Throughout this paper, we have accepted Nissen
and Bullemer’s (1987) view that the SRT task pro-
vides a fair test of the implicit-learning position
(a view shared in all the papers modelled here).
That view is, of course, open to question. Some the-
orists suggest that the SRT task can sometimes tap
explicit learning as well as implicit learning and try
to distinguish the possibilities in terms of a partici-
pant’s awareness (e.g., Destrebecqz & Cleeremans,
2001). To assess awareness, we asked our partici-
pants to tell us as much as they could about the
sequence presented to them. That technique is
time honoured, but it may be insufficient. In our
view, it is difficult, if not impossible, to achieve a
psychophysics of awareness that is both convincing
and theoretically neutral.

By contrast, Destrebecqz and Cleeremans
(2001) used an indirect way to measure awareness
and argued that the measure correlates with use of
the implicit system. An alternative possibility is
that the measure has little to do with the
implicit/awareness dimension but rather correlates
with the participant’s preferred strategy for the
SRT task: Under some circumstances, people try
to learn something about the series, and under
others they are content to use local information,
as described in our model. We have no doubt
that people can learn about a series if pressed to
do so, only that they are unlikely to do so
without provocation or purpose. In any case, our
point remains that performance in the SRT tasks
modelled here can be understood in terms of the
use of local information during retrieval from
memory. As a measure of private experience,
awareness needs an explanation but, by definition,
has no explanatory power.

The work presented here, and the work on

which it builds (Jamieson & Mewhort, 2005,
1780

2009), provides a common account of putatively
distinct “implicit” and “explicit” tasks. Jamieson
and Mewhort (2005) studied recall of sequences
of symbols ordered by a grammar. They quantified
the redundancy of the grammar and of the exem-
plars derived from it. The two measures are
confounded, but when they were separated, local
redundancy, rather than the redundancy of the
grammar itself, predicted performance. Such
results argue against the view that people abstract
the grammar implicitly. Instead, they suggest
that participants use local information from the
exemplars themselves. Jamieson and Mewhort
(2009) showed that Minerva 2’s mechanism for
retrieval from memory predicts performance in
the judgement-of-grammaticality task; Pothos
and Bailey (2000) have demonstrated very similar
results using Nosofsky’s (1986) classification
model. Finally, the present work shows that the
principles of retrieval from memory anticipate per-
formance in the SRT task. We are encouraged that
common principles allow us to understand per-
formance across so many tasks and behaviours
and, in particular, across tasks often distinguished
as “implicit” and “explicit”. Nature often uses a
single mechanism for many purposes.
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