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Jamieson and Mewhort (2009b) proposed an account of performance in the artificial-grammar
judgement-of-grammaticality task based on Hintzman’s (1986) model of retrieval, Minerva 2. In the
account, each letter is represented by a unique vector of random elements, and each exemplar is
represented by concatenating its constituent letter vectors. Although successful in simulating several
experiments, Kinder (2010) showed that the model fails for three selected experiments. We track the
model’s failure to a constraint introduced by concatenating letter vectors to construct the exemplar
representation. To fix the problem, we use a holographic representation. Holographic representation
not only provides the flexibility missing with the concatenation scheme but also acknowledges
variability in what subjects notice when they inspect training exemplars. Armed with holographic
representations, we show that the model successfully captures the three problematic data sets. We
argue for retrospective accounts, like the present one, that acknowledge subjects’ skill in drawing unex-
pected inferences based on memory of studied items against prospective accounts that require subjects
to learn statistical regularities in the training set in anticipation of an undefined classification test.

Keywords: Artificial grammar; Exemplar theory; Holographic reduced representation; Judgement of
grammaticality; Global similarity.

In a judgement-of-grammaticality (JOG) task, sub-
jects inspect strings of letters constructed using a
grammar. After inspecting the strings, they classify
novel strings as grammatical or ungrammatical,
usually achieving about 60% correct.

Jamieson and Mewhort (2009a) explained JOG
by extending Hintzman’s (1986) Minerva 2 model

of human memory. According to their account,
subjects store each exemplar as a separate trace in
memory. When a test probe is presented, each
trace is activated in proportion to its similarity to
the probe, and JOG is based on the similarity of
the probe to an aggregate of the activated traces.
The account has roots in Brooks’s (1978; see also
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Vokey & Brooks, 1992) analysis of performance
in JOG.

Whereas themodel captures judgement-of-gram-
maticality in several experiments (Jamieson, Holmes,
& Mewhort, 2010; Jamieson & Mewhort, 2009a,
2010), Kinder (2010) showed that the model fails
for three others. Based on the failure, Kinder
argued that the Minerva 2 model is a poor account
of the cognitive andmemorial processes that underlie
peoples’ judgements-of-grammaticality.

In this reply, we sketch the model, describe why
it failed, and show that it captures Kinder’s (2010)
examples when new representation assumptions
are provided.

Jamieson and Mewhort’s (2009a) model

In the model, a letter is represented by a unique
vector of random elements; letter-strings are rep-
resented by concatenating letter-vectors in the
same order as the letters. To illustrate, a string
ABCD is represented by, first, generating a vector
for each letter—a, b, c, and d, respectively—and,
then, concatenating the vectors accordingly:
ABCD ¼ a // b // c // d (where // indicates con-
catenation). The representation scheme encodes
serial-position information in the string.

Memory, M, is an m × n matrix. Each of the i
rows in memory stores a studied exemplar. Each of
the j columns represents a feature.

Storage in memory is represented by copying
items to rows in M. Imperfect encoding is simu-
lated by resetting a proportion of elements in M
to zero (indicating data loss). The amount of
data loss is controlled by a parameter L that speci-
fies the probability of storing a feature in memory
correctly; thus, each element inM has a probability
1 – L of reverting to zero.

When a probe is presented to memory, it is
compared against all traces in parallel. Trace i’s
activation, ai, is computed as,

ai =

∑n

j=1
pj ×Mij

""""""
∑n

j=1
p2
j

√
×

""""""""
∑n

j=1
M2

ij

√

⎛

⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎠

3

1

where p is the probe, M is memory, i indexes the
1 . . . m traces in memory, and j indexes the
1 . . . n elements in the probe and traces.

The information retrieved from memory is a
vector, c, that is the sum of the activated traces.
Each of the j ¼ 1 . . . n elements in c is computed
as,

cj =
∑m

i=1

ai ×Mij 2

where i indexes the 1 . . . m rows in memory, and j
indexes the 1 . . . n columns in memory.

The model judges the grammaticality of a probe
by its similarity to c—that is, cos{p,c}.

Why the model failed

The model captures data from several JOG
experiments (Jamieson & Mewhort, 2009a, 2010;
Jamieson et al., 2010) and, with a simple extension,
captures performance in serial-response tasks
(Jamieson & Mewhort, 2009b). However, the
model fails for data from three JOG experiments.
These failures reflect constraints of the concatena-
tion-based representation scheme.

Concatenation-based representations bind
letters to their serial positions. Because a trace’s
activation is computed across the j features of the
probe and trace (see Equation 1), the model
assumes that trace activation is determined by
the number of letters in corresponding serial pos-
itions. Because of the serial-position constraint, a
probe fails to activate traces that share its letters,
bigrams, and trigrams, unless those units appear
at the identical serial positions. Thus, ABCD
will not activate traces CDAB, BCDA, and
DBAC. This aspect of the model contradicts data
(Kinder, 2010). A more appropriate scheme
would capture what people notice in the training
exemplars and acknowledge overlap of units
independent of their serial positions.

Holographic representation

Here, we propose a representation scheme based
on the mathematics of holography. We rely on
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Gabor’s (1968, 1969; see also Longuet-Higgins,
1968; Poggio, 1973) insights that a representation
based on vector convolution mimics a hologram
and can be used to encode serial information (see
also Metcalfe-Eich, 1982; Murdock, 1995).
Holographic representation solves other long-
standing puzzles. A holographic representation
of the word bank, for example, can hold simul-
taneously the several meanings of that word
(Jones & Mewhort, 2007).

Our method for holographic representation
relies on circular convolution. Circular convolu-
tion is an operation that associates two vectors x
and y by collapsing their outer-product matrix to
form a new vector, z:

zi =
∑n−1

j=0

xjmodn × y(i−j)modn {for i = 0 to n− 1}

3

Figure 1 illustrates the computation of z from two
vectors, x and y, both of dimensionality 5. The
operation is commutative and associative, and
distributes over addition.

Noncommutative circular convolution is used to
model asymmetric serial-order information; such
as the left-to-right directional associations
amongst letters that subjects develop in the JOG
task. Noncommutative circular convolution is
accomplished by scrambling indices in a letter-
vector’s representation differently depending on
whether it is the predecessor or successor in a
bigram (see Jones & Mewhort, 2007; Plate,
1995). Plate’s noncommutative circular convolu-
tion is neither commutative nor associative, but
it distributes over addition and preserves similarity.
In the remainder of this paper, we denote noncom-
mutative circular convolution by an asterisk (e.g., z
¼ x ∗ y). For brevity, we use the term convolution in
place of noncommutative circular convolution.

To illustrate how one constructs the holo-
graphic representation of a letter-string, consider
the item ,ABCD. (following Kinder & Lotz,
2009, < indicates the start, and > indicates the
end of the string). To capture first-order structure
of ,ABCD., we sum all individual letter-vectors:
< + a + b + c + d + >. To capture second-
order structure, we sum all convolved bigrams:
<∗a + a∗b + b∗c + c∗d + d∗>. To capture its

Figure 1. The figure shows two vectors, x and y (both of dimensionality n ¼ 5). The outer product of x and y is a n × n matrix. The arrows
show how the elements of the outer-product matrix are summed during circular convolution to produce a summary vector z.
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third-order structure, we sum all convolved tri-
grams: (<∗a)∗b + (a∗b)∗c + (b∗c)∗d + (c∗d)∗>.
To represent ,ABCD. as a composite of
letters, bigrams, and trigrams, we sum the units
from all three levels. One could extend the oper-
ation to include larger chunks (e.g., four-grams,
five-grams, and so on).

Holographic representations encode serial-
order information independently from serial-
position information. Because serial-order
information is decoupled from serial-position
information, a probe can retrieve memory traces
of strings that share its letters, bigrams, and tri-
grams, even when the strings appear at different
serial positions. This is the property of holographic
representation that finesses the serial-position
constraint associated with concatenation-based
models.

Of course, people do not encode all information
in a string, and it is unlikely that all subjects notice
the same information (Wright & Whittlesea,
1998). To acknowledge these facts, we represent
an exemplar as a random sample of six units (i.e.,
single letters, bigrams, and trigrams). Thus, in
our simulations, a string ,ABCD. might be rep-
resented as a + b + d + <∗a + b∗c + (b∗c)∗d at
one encoding and b + b + <∗a + (b∗c)∗d +
(<∗a)∗b + (c∗d)∗> at another.

Simulations

We applied Jamieson and Mewhort’s (2009b)
retrieval model against the three judgement-of-
grammaticality experiments that Kinder (2010)
identified as problematic. For comparison, we
report simulations using both the concatenation-
based representations and the holographic
representations.

All of the simulations that follow were con-
ducted using the same procedure. First, we gener-
ated representations for the relevant training and
test strings. Second, we stored the training
strings to memory (L ¼ 1). Third, we recorded
the echo intensity of each test string. We report
mean echo intensity for classes of test strings;
however, the model provides an echo intensity
for each string.

Simulation 1: Knowlton and Squire (1996)
Knowlton and Squire (1996) reported an experi-
ment in which subjects studied grammatical train-
ing strings and then judged the grammaticality of
novel test strings. The test set included four classes
of items defined factorially by two levels of gram-
matical status (grammatical and ungrammatical)
and two levels of similarity (high and low).
Similarity was defined as associative chunk
strength (ACS): High-ACS items shared more
bigrams and trigrams with training items than
did low-ACS items.

Knowlton and Squire’s (1996) results are pre-
sented in the top panel of Figure 2. As shown, sub-
jects preferred grammatical to ungrammatical test
strings and preferred high-ACS to low-ACS
ungrammatical items. The selective influence of
ACS on ungrammatical strings issues a constraint
on models of JOG.

Figure 2. Grammaticality judgement as a function of both
grammatical status and associative chunk strength (ACS). The
top panel shows Knowlton and Squire’s (1996, Experiment 1)
results. The centre panel shows results for the concatenation-based
model. The bottom panel shows results for the convolution-based
model. For both simulations, L ¼ 1, where L is a parameter that
specifies the probability of storing a feature in memory correctly.
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We conducted 100 simulations of Knowlton
and Squire’s (1996) experiment using concatena-
tion-based representations and 100 simulations
using holographic representations. The middle
and bottom panels of Figure 2 show mean echo
intensity for the four classes of items from the
two sets of simulations. As shown, the two
models generate qualitatively different predictions.
The holographic model predicted Knowlton and
Squire’s data whereas the concatenation-based
model did not. Most notable, the concatenation-
based model failed to anticipate subjects’ prefer-
ence for grammatical over ungrammatical test
items.

Based on our simulations, we argue that holo-
graphic representation is the more accurate
method for capturing how people represent train-
ing and test strings in memory. Critical to our
conclusion that JOG reflects exemplar-based
similarity, we did not change our model’s
account of storage and retrieval from memory;
only the representation scheme differed.

Simulation 2: Kinder (2000)
In the first simulation, we showed that the holo-
graphic representation scheme solves the problems
associated with the concatenation-based scheme.
The second simulation generalizes that argument
to data from Kinder (2000; see also Kinder &
Lotz, 2009).

Kinder manipulated low-order serial depen-
dencies, high-order serial dependencies, and pos-
itional dependencies of letters in training and
test strings across four types of test item. The
items were designed, in psychophysical tradition,
to uncover properties of the stimuli to which sub-
jects are sensitive. Of the four types, Types 1 and 2
were ungrammatical; Types 3 and 4 were gramma-
tical. Type 1 items displaced letters from their
serial positions in the training strings; Type 2
items did not. Type 3 items shared small chunks
with the training set (i.e., bigrams and trigrams);
Type 4 items shared large chunks with the training
set (i.e., quartets or greater). An advantage for
Type 2 over Type 1 tests exposes sensitivity to
positional rules for ungrammatical items. An
advantage for Type 4 over Type 3 tests exposes

sensitivity to large- over small-chunk similarity,
independent of grammatical status.

Figure 3 (top panel) shows subjects’ grammati-
cal endorsement for the four types of test (redrawn
from Kinder, 2000, Fig. 3, p. 99). As shown, sub-
jects strongly favoured grammatical over ungram-
matical test strings (i.e., Types 3 and 4 items
over Types 1 and 2 items), reliably, albeit mod-
estly, favoured ungrammatical test strings that
had letters in serial positions that were consistent
with the grammar’s positional rules (i.e., Type 2
over Type 1 items), and (c) unreliably, but measur-
ably, favoured grammatical tests that shared large
chunks with specific training items (i.e., Type 4
over Type 3 items). A competent model should
be capable of reproducing the data.

We conducted 100 simulations of Kinder’s
(2000) experiment using concatenation-based
representations and 100 simulations using

Figure 3. Grammaticality judgement as a function of item type.
The top panel shows Kinder’s (2000) results. The centre panel
shows results for the concatenation-based model. The bottom panel
shows results for the convolution-based model. For both
simulations, L ¼ 1, where L is a parameter that specifies the
probability of storing a feature in memory correctly.
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holographic representations. The middle panel of
Figure 3 shows mean echo intensity for the four
classes of items using the concatenation-based rep-
resentations; the bottom panel of Figure 3 shows
the mean echo intensity for the four classes of
test items using the holographic representations.
As shown, the holographic model predicted
Kinder’s data whereas the concatenation-based
model did not. Like Kinder’s subjects, the holo-
graphic model exhibits a strong preference for
grammatical over ungrammatical strings (i.e.,
Types 3 and 4 over Types 1 and 2), a weak prefer-
ence for ungrammatical strings that conformed to
the grammar’s positional rules (i.e., Type 2 over
Type 1), and a weak preference for grammatical
test strings that included a near neighbour in the
training set (i.e., Type 4 over Type 3 strings).
Unlike her subjects, the concatenation-based
model exhibited a strong sensitivity to violations
of the grammar’s positional dependencies (i.e.,
Type 2 over Type 1 items) and a strong endorse-
ment of grammatical strings that shared large
chunks with specific training items (i.e., Type 4
over Type 3 items). The simulation reaffirms our
conclusions from Simulation 1.

Simulation 3: Kinder and Shanks (2001)
In the first two simulations, we showed that the
holographic representation scheme gives a better
fit to data than does the concatenation-based
scheme. Simulation Study 3 examines the same
problemusing data fromKinder and Shanks (2001).

Kinder and Shanks (2001) included unstudied
grammatical items, studied grammatical items,
and unstudied ungrammatical items. Figure 4
(top panel) shows subjects’ grammatical endorse-
ment for the three classes of items (drawn from
Kinder & Shanks, 2001, Table 1, p. 653). As
shown, subjects preferred grammatical over
ungrammatical strings but did not distinguish
studied from the unstudied grammatical test
items. The result suggests that a competent
model of the artificial grammar task should not
prefer studied to unstudied strings; however, see
Jamieson and Mewhort (2010) for data that
suggest the opposite (we return to this point in
the Discussion section).

We conducted simulations of Kinder and
Shanks’s (2001) experiment using concatenation-
based and holographic representations. The
middle panel of Figure 4 shows results for the con-
catenation-based model; the lower panel shows
results with the holographic model. Whereas the
concatenation-based model incorrectly predicts
that subjects should prefer studied to unstudied
items, the holographic model correctly predicts
that subjects prefer grammatical over ungrammati-
cal items. Once again, the holographic model does
a better job of predicting subjects’ judgements-of-
grammaticality.

Discussion

Kinder (2010) argued that Jamieson and
Mewhort’s (2009a) retrieval model is wrong. We

Figure 4. Grammaticality judgement as a function of both
grammatical and study status. The top panel shows Kinder and
Shanks’ (2001, Experiment 1) results. The centre panel shows
results for the concatenation-based model. The bottom panel shows
results for the convolution-based model. For both simulations, L
¼ 1, where L is a parameter that specifies the probability of
storing a feature in memory correctly.

214 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2011, 64 (2)

JAMIESON AND MEWHORT

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
a
m
i
e
s
o
n
,
 
R
a
n
d
a
l
l
 
K
.
]
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
3
4
 
2
7
 
J
a
n
u
a
r
y
 
2
0
1
1



have traced the problem to our previous and naı̈ve
representation scheme. The concatenation scheme
encoded a string of letters as if the letters were
assigned to serial positions. The holographic
scheme assumes that participants encode a string
as a collection of its subunits, retaining details of
serial-order information in the training items,
but very little about serial-position information—
a position consistent with data (e.g., Kinder,
2010). Armed with holographic representations,
the model accommodates the results of all three
experiments that Kinder identified as problematic
for it. The holographic model also captures data
from previous simulations (Jamieson et al., 2010;
Jamieson & Mewhort, 2009a, 2010); because
of space limitations, we do not report those
simulations here. We conclude that holographic
representation is a more accurate method for
capturing what people notice in training and test
strings.

By changing the representations, one might
object that we have created a new model. In our
view, representation assumptions are important
but not definitional. The model’s core assumptions
still apply: Subjects store aspects of each training
exemplar in memory and infer a test probe’s gram-
maticality from its global similarity to the training
set. The difference is that the information noticed
is stored in a distributed fashion within a holo-
graphic structure. We see no need to assume that
the subject extracts knowledge of the grammar or
tabulates the frequency distributions of chunks
(or other units) across the studied exemplars.
Admittedly, however, our evidence does not rule
out such learning.

Our retrieval-based explanation for JOG con-
trasts to learning explanations. Learning accounts
assume that the subject prepares for the test.
However, because the subjects are informed of
the test only after they have inspected the training
set, it is not clear how the subject would intuit the
kind of test they will be given. By contrast, our
memory account assumes that subjects notice
aspects of the exemplars and, at test, use their
memory of the training strings. If the probe
reminds them of studied exemplars, they judge it
to be grammatical. In Redington and Chater’s

(2002) terms, learning accounts are prospective
and eager whereas retrieval accounts, like ours,
are retrospective and lazy. Stepping aside from
model fitting, we prefer a retrieval-based expla-
nation because it more closely matches the
demand/constraints of the experimental
procedure.

In Kinder and Shanks’s (2001) experiment,
subjects showed only a modest preference for
studied over unstudied test strings. We have
observed results both consistent and inconsistent
with that position (Jamieson & Mewhort, 2010).
The distinction points to a problem in asserting
that subjects respond to one form of structure
over another and, thus, to any theory of JOG
that asserts that subjects learn a specific form of
information. Wright and Whittlesea (1998)
demonstrated the problem nicely using digit
strings. When strings were arrayed horizontally,
judgements were consistent with the numerical
distance between strings; when arrayed vertically,
judgements were consistent with a match of
digits in corresponding serial positions. Thus,
even mundane stimulus manipulations change
the encoding strategies that subjects adopt and,
consequently, their judgements at test based on
memory of the exemplars. For example, if string
length exceeds memory span, subjects might
encode strings as subunits rather than as whole
strings (Jamieson & Mewhort, 2005; Miller,
1956). We acknowledge that encoding flexibility
makes a mechanistic account of JOG difficult;
however, we also see it to be a behavioural fact
that needs to be understood (Jamieson &
Mewhort, 2005). The holographic model accepts
variability at encoding and provides a scheme to
represent it. We have used a random sample of
subunits here; however, we can generate predic-
tions for any systematic encoding strategy. In our
view, models of JOG must accommodate flexi-
bility in subjects’ use of information, rather than
explain how subjects use a particular kind of
information over all others.
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Accepted revision received 12 October 2010
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