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Abstract We present and test an instance model of
associative learning. The model, Minerva-AL, treats
associative learning as cued recall. Memory preserves
the events of individual trials in separate traces. A
probe presented to memory contacts all traces in parallel
and retrieves a weighted sum of the traces, a structure
called the echo. Learning of a cue–outcome relationship
is measured by the cue’s ability to retrieve a target
outcome. The theory predicts a number of associative
learning phenomena, including acquisition, extinction,
reacquisition, conditioned inhibition, external inhibition,
latent inhibition, discrimination, generalization, blocking,
overshadowing, overexpectation, superconditioning, re-
covery from blocking, recovery from overshadowing,
recovery from overexpectation, backward blocking, back-
ward conditioned inhibition, and second-order retrospec-
tive revaluation. We argue that associative learning is
consistent with an instance-based approach to learning and
memory.
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Exemplar theory

In a simple associative learning procedure, a cue, A, is
presented followed by an outcome, X. With experience,
presentation of A elicits anticipation of X. The growth of
anticipation is the process of associative learning.

Typically, associative learning is modeled as a gradual
accrual of excitatory and inhibitory connections between
stimulus units. Associative strength is treated as summative;
so the strength of an association between stimuli on trial t
stands for the entire history of learning. This scheme for
understanding learning is well described in the Rescorla–
Wagner model (Rescorla & Wagner, 1972) and the many
theories that follow from it.

Whereas summative theories provide insight into learning,
theymake an unreasonable assumption. Namely, they deny that
the learner remembers the events of separate learning trials—a
problem that Miller, Barnet, and Grahame (1995) call the
assumption of path independence. The problem is important.
First, it distinguishes learning from memory. Second, it denies
a growing body of evidence that animals other than humans
remember the events of learning trials (e.g., Fagot & Cook,
2006; Vaughan & Greene, 1984; Voss, 2009).

In contrast to the classical theories of learning, instance
theories of human memory identify the individual experi-
ence (i.e., the instance) as the primitive unit of knowledge
and treat learning as the accumulation and deployment of
instances from memory. Brooks (1978, 1987) was among
the first to champion the view. Medin and Schaffer (1978)
were among the first to formalize it (see also Reed, 1972).
Hintzman’s (1986, 1988) Minerva 2 model and Nosofsky’s
(1986) generalized context model are classic formalizations
of the view. Kruschke’s (1992, 1996, 2001) and Logan’s
(1988, 2002) models are modern expressions of the
approach. Blough (1998) provided an instance-based
formulation of associative learning based in signal detection
theory.
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In this article, we build on previous efforts (Jamieson,
Hannah & Crump 2010) to show that an instance model of
associative learning, Minerva-AL, can reproduce associa-
tive learning phenomena. We apply the model to a broad
range of associative learning protocols to convince readers
that memory principles merit consideration as explanatory
devices of associative learning. To establish breadth, we
tackle five points. First, we show that the model handles
acquisition, extinction, and rapid reacquisition. Second, we
show that Minerva-AL handles inhibition, including condi-
tioned inhibition, latent inhibition, and external inhibition.
Third, we show that the model handles cue competition,
including blocking, overshadowing, superconditioning, and
overexpectation. Fourth, we show that the model handles
nonlinear discrimination problems, including negative
patterning and biconditional discriminations. Fifth, we
show that the model handles retrospective revaluation,
including recovery from blocking, recovery from over-
shadowing, and second-order retrospective revaluation.

Each set of simulations demonstrates an aspect of the
model. The demonstrations of acquisition, extinction, and
rapid reacquisition give a clear picture of the model’s
mechanics. Demonstrations of conditioned inhibition show
how the model comes to anticipate that an outcome will not
occur—a corollary of discrepancy encoding. We will use
the problem of cue competition to develop a clear depiction
of cue interactions at encoding and retrieval—conditions
that will be central to our solution to retrospective
revaluation. We present simulations of discrimination to
illustrate the model’s ability to remember specific cue–
outcome contingencies. We will use the problem of
retrospective revaluation to illustrate complex interactions
between encoding and retrieval mechanisms. The work
shows that with a principled modification, a model of
human memory can address the problem of animal
learning.

Minerva-AL

Minerva-AL follows from Hintzman’s (1986, 1988)
Minerva 2 model of human memory. Minerva 2 is an
instance theory of human memory for explaining episodic
recognition and judgment of frequency. The theory has
since been applied to a wide range of memory phenomena
(e.g., Arndt & Hirshman, 1998; Benjamin, 2010; Clark,
1997; Dougherty, Gettys, & Ogden, 1999; Goldinger,
1998; Hicks & Starns, 2006; Jamieson, Holmes &
Mewhort 2010; Jamieson, Hannah & Crump 2010;
Jamieson & Mewhort, 2009a, 2009b, 2010, 2011;
Kwantes, 2005; Kwantes & Mewhort, 1999; Kwantes &
Neal, 2006; Thomas, Dougherty, Sprenger, & Harbison,
2008).

Informally, Minerva 2 is a theoretic framework that
describes the memorial processes involved in representing,
storing, and retrieving instances of experience. The model
assumes that each experience is stored in memory as a
unique trace (i.e., an instance). Presenting a probe to
memory retrieves an aggregate of traces similar to it.
Because a probe retrieves traces similar to it, it retrieves a
representation of itself from memory. This is how the model
accomplishes recognition. Because a probe retrieves whole
traces, and because traces include cues that co-occur, a
probe that consists of a single cue also retrieves the events
it has co-occurred with in the past. This is how the model
accomplishes cued recall. We will use the model’s mecha-
nism for cued recall to model associative learning.

Formally, Minerva 2 is a computational theory of
memory. In the model, a stimulus, or event, is represented
by a vector of n elements (or features). These features can
refer to either particular stimulus properties (e.g., has
wings) or information states (e.g., neural potentials). The
distinction is not important to the model predictions.

Each feature of a representation takes one of three
discrete values: +1, -1, or 0. A value of +1 or -1 indicates
that the feature is relevant to the stimulus description; a
value of 0 indicates that the feature is indeterminate or
irrelevant.

Co-occurrence of events is represented by summing
event representations to form a single vector. For example,
if two events A = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0] and B = [0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0] co-occur, their co-occurrence is
represented as AB = A + B = [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0].
Generally, representations are orthogonal: A shares no
features with B (as in the example).

In Minerva 2, memory is a two-dimensional matrix, M.
In the matrix, rows store instances or events, and columns
represent the features in each event. An event, E, is encoded
as a trace in memory by copying its vector to the next row
in the matrix. The probability that each feature in the trace
is stored to memory is a model parameter, L. Thus, as L
increases from zero to one, an event is stored more
completely in memory.

Probing memory with a cue activates all traces in
proportion to their similarities to the cue. In Minerva 2,
similarity of the probe, P, to trace i in memory, Mi, is
computed as

Si ¼

Pn
j¼1

Pj �Mij

nR
ð1Þ

where Pj is the value of the jth feature in the probe, Mij is
the value of jth feature of the ith row in memory, n is the
number of features in the vectors under comparison, and nR
is the number of nonzero features in the vectors under
comparison. The measure behaves similarly to the Pearson
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correlation coefficient. Similarity is +1 when the row is
identical to the probe, -1 when the row is opposite to the
probe, and 0 when the row is orthogonal to the probe.

Trace i’s activation, Ai, is a nonlinear function of its
similarity to the probe,

Ai ¼ S3i ð2Þ
In principle, the probe activates all traces in memory.

However, the activation function ensures that the traces that
are most similar to the probe are activated most strongly.

The information that a probe retrieves from memory is
another vector, C, called the echo. Each of the j elements in
the echo is equal to the sum of the corresponding weighted
elements in the i = 1 . . . m traces in memory,

Cj ¼
Xm
i¼1

Ai �Mij ð3Þ

Hintzman (1986) illustrated how to use the echo to
simulate cued recall. Let the vector elements j = 1 . . . k
stand for a name and the elements j = k+1 . . . n stand for a
face. To retrieve a face given a name, a probe is constructed
that has features j = 1 . . . k filled in and features j = k+1 . . . n
empty (i.e., filled with zeroes). Given that the name
represented in features j = 1 . . . k finds a match in memory,
features j = k+1 . . . n in the echo will approximate the
features of the associated face (retrieval of a name given a
face is accomplished in the opposite fashion).

Quality of cued recall—how well the retrieved vector
approximates the target—is indexed in two steps: Values in
the echo are normalized,

C0
j ¼ Cj

max C1;n

�� �� ð4Þ

then similarity is computed between the normalized echo
and the relevant target associate, X:

X jP ¼

Pn
j¼1

Xj � C0
j

nR
ð5Þ

where P is the probe, X is the target associate, and nR is the
number of nonzero features in X and C'. The value X|P is
read “retrieval of X given P.” The larger that X|P is, the
better that X is retrieved by P. If the probe retrieves X
perfectly, then X|P = 1. If the probe retrieves an inverse (i.e.,
opposing) representation of X, then X|P = -1. If the probe
does not retrieve X, then X|P = 0.

Like most theories of human memory, Minerva 2
assumes independent encoding of items. For example, in a
recognition memory experiment, each studied item is stored
to a row in the memory matrix, without considering the
order in which list items were presented. The same is true in
studies of categorization and cued recall.

Whereas independent encoding of list items is sufficient to
simulate performance in many memory experiments, it is
insufficient to simulate learning. In a learning experiment, the
problem of interest is to understand how memory for the
events of previous trials influences encoding andmemory on a
present trial. Thus, to model learning, we adapted the Minerva
2 model so that the memory of a present trial is affected by
memory of preceding trials. The adapted model is called
Minerva-AL (AL for associative learning).

The principal difference between Minerva-AL and
Minerva 2 is how the two models encode an experience.
In the Minerva 2 model, memory for a trial is established
by copying an event vector, E, to a row in memory. In
Minerva-AL, memory is established for a trial by copying
the difference between an event vector, E, and the echo, C,
it retrieves. By encoding the difference between the event
vector and the echo, memory of preceding trials (i.e., C)
shapes encoding on a present trial. Critically, Minerva-AL’s
encoding operation emphasizes memory for unexpected
over expected information in the event vector. For reasons
that will become clear shortly, we will call the encoding
operation discrepancy encoding.

Minerva-AL implements discrepancy encoding by sub-
traction. If Mij is the jth feature of the ith trace in memory,
Ej is the jth feature of the event vector, and C'j is the jth
feature of the normalized echo, then

Mij ¼ Ej � C0
j ð6Þ

with probability L (Mij = 0 with probability 1 –L).
To illustrate discrepancy encoding, consider a learning

trial where A is presented followed by X. In our example, A
and X are represented by four features, with A = [1.0, 1.0,
0.0, 0.0] and X = [0.0, 0.0, 1.0, 1.0]. Because the trial
presents A followed by X, the event vector, E, is equal to
E = A + X = [1.0, 1.0, 1.0, 1.0]. Suppose that on trial i, A is
presented and retrieves C′ = [0.4, 0.1, 0.6, 1.0]. The values
in the third and fourth elements of the echo (i.e., 0.6 and
1.0) show that the model retrieves a strong albeit imperfect
expectation of X. According to discrepancy encoding (see
Eq. 6), the information stored to row i in memory will equal
Mi = E – C′ = [1.0, 1.0, 1.0, 1.0] – [0.4, 0.1, 0.6, 1.0] = [0.6,
0.9, 0.4, 0.0]. Note that the most anticipated feature in C′
(feature 4) is encoded as the smallest absolute value in Mi

(i.e., 0.0), the second most anticipated feature in C′ (feature 3)
is encoded as the second smallest absolute value in Mi (i.e.,
0.4), and so on. That is, Minerva-AL encodes the least
anticipated features in E most strongly and the best
anticipated feature not at all.

An important corollary of discrepancy encoding is that
memory encodes anticipated but unpresented events. To
illustrate by extending the previous example, consider a
next trial where A is presented without X. That is, E = A =
[1.0, 1.0, 0.0, 0.0]. Because Awas previously paired with X,
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A retrieves C′ = [0.4, 0.1, 0.6, 1.0], indicating that A
elicited an expectation of X. Even though X was not
presented, the unfulfilled expectation for X is stored
through discrepancy encoding as Mi = E – C′ = [0.6, 0.9,
-0.6, -1.0]. Note that, now, differently from the previous
example, the information encoded to the third and fourth
elements of Mi (i.e., the italicized features representing X)
take the opposite sign of the original representation for X =
[0.0, 0.0, 1.0, 1.0]. This inverse representation of X records
the fact that presenting A caused the model to expect X but
that X did not occur. This property of the model is pivotal
to our explanation of associative learning (Jamieson,
Hannah & Crump 2010). Of course, we are not the first
to argue for the importance of discrepancy encoding.
Tolman (1932) discussed expectancy in learning. Kamin
(1969) and von Restorff (1933) identified expectancy as a
key principle of encoding and remembering. Whittlesea
and Williams (2000, 2001a, 2001b) used violation of
expectancy to explain memory-based inference. Rescorla
and Wagner (1972) used surprise to model learning in cue
competition. Finally, error correction algorithms in neural
networks privilege unexpected over expected features
(Gluck & Bower, 1988).

To implement discrepancy encoding, we augmented two
computational aspects of the model. First, the similarity rule
in Minerva 2 (see Eq. 1) is tailored to a situation where
features of stimulus and memory representations can take
one of only three discrete values {+1, 0, -1}. However,
discrepancy encoding allows feature values to range
continuously between ±2. The remedy was to replace
Minerva 2’s similarity formula with a standard vector
cosine (see Kwantes, 2005, for precedence):

Si ¼

Pn
j¼1

Pj �MijffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

P2
j

s ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

M 2
ij

s ð7Þ

where Pj is the value of the jth feature in the probe, Mij is
the value of the jth feature of the ith row in memory, and n
is the number of features in the cue-fields of the vectors
under comparison. The cosine measure of similarity is
conceptually consistent with the similarity measure used in
the Minerva 2 model. However, it normalizes over vector
length and, thus, handles the continuous and added range of
values of memory traces that result from the discrepancy
encoding operation.

Second, we added noise to the echo by sampling a value
from the range ±0.001 to each of its elements. The change
is pragmatic. Minerva 2 is a model of single-trial learning.
If noise is not added to the echo, Minerva-AL learns too
quickly, often in a single trial. Thus, on a first learning trial,
the echo contains noise alone.

In the remainder of the work presented here, we apply
Minerva-AL against associative learning protocols. All of
the simulations will follow the same general method. Cues
A through D are represented by separate 120 element
vectors. For cue A, elements 1–20 will be set to one and all
other elements equal to zero. For cue B, elements 21–40
will be set to one and all other elements equal to zero. For
cue C, elements 41–60 will be set to one and all other
elements equal to zero. For cue D, elements 61–80 will be
set to one and all other elements equal to zero. Features of
the experimental context (i.e., lighting, odors, ambient
noise) are represented using a 120-element vector with
elements 81–100 set to one and all other elements set to
zero. Finally, outcome X will be a 120-element vector with
elements 101–120 set to one and all other elements equal to
zero.1

On each learning trial, a probe is constructed and then
applied to memory;although we will not include a notation
for the context in the probe, the context will be a part of
every probe on every trial. The information retrieved into
the echo is used to measure learning and to shape encoding
via the discrepancy encoding operation. Learning is
denoted by a conditional. For example, X|B refers to
“retrieval of X given B,” and X|AB refers to “retrieval of X
given AB.” Learning in the model ranges between -1 and
+1. Positive values signal that the presented cue or cues
retrieved X from memory (i.e., that the presented cues
caused an expectation that X will follow). Negative values
signal that the presented cue or cues retrieved an
inverse representation of X from memory (i.e., that the
cues caused an expectation that X will not follow). A value
of zero signals that the presented cues elicited no
expectation for X.

Despite differences between Minerva 2 and Minerva-AL,
Minerva-AL preserves the spirit of its parent theory. Each
learning trial is recorded in memory as a unique trace. At
retrieval, the probe contacts all traces in parallel, and a
weighted sum of the information in memory is retrieved (i.e.,
the echo). Information retrieved by a cue is quantified from the
echo, with learningmeasured as the cue’s ability to retrieve the
target outcome from memory.

Simulations of the formal model

We now simulate a series of associative learning protocols.
In Section 1, we simulate acquisition and extinction. In
Section 2, we simulate variants of inhibition. In Section 3,
we simulate cue interaction protocols. In Section 4, we

1 In a previous article, the elements of a representation could take
values +1 and -1. Assigning +1 to the representations is a simplifying
assumption and does not change the model or its behavior.
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simulate discrimination and generalization. In Section 5, we
simulate retrospective revaluation.

Section 1: Acquisition

Acquisition and extinction In a simple associative learn-
ing protocol, a cue, A, is presented, followed by an
outcome, X. After several pairings, the cue elicits
anticipation of X, a result called acquisition. If A is then
presented alone, it ceases to elicit anticipation of X, a
result called extinction.

We applied Minerva-AL to a 200-trial acquisition/
extinction protocol. Trials 1–100 were acquisition trials
(i.e., A followed by X); trials 101–200 were extinction
trials (i.e., A presented alone). On each trial a trace was
stored to memory. On acquisition trials, the event vector,
E, was equal to A + X. On extinction trials, E = A. On each
trial, we evaluated learning by probing memory with A
and indexing learning as retrieval of X given A.

We conducted 25 independent replications of the
protocol for each of three values of L = .33, .67, and 1.0.
Figure 1 presents the results of the simulation.

As is shown in Fig. 1, Minerva-AL anticipates negative-
ly accelerated acquisition and extinction curves. The rate of
learning was correlated with the encoding parameter, L.

How does Minerva-AL explain acquisition and extinc-
tion? At the outset of a simulation, memory is empty (a
matrix of 0 s). Consequently, on trial 1, A retrieves only
noise into the echo. Because the echo contains only noise,
retrieval of X given A is approximately zero, and the event
vector is encoded strongly to memory (see Eq. 6). On trial
2, A retrieves the trace stored on trial 1. Because the trace
records the pairing of A and X on trial 1, retrieval of X
given A improves on trial 2. On trial 3, cue A now recruits
the traces stored on trials 1 and 2. Summing both traces into
the echo produces an even better representation of X.
Recruiting each additional trace into the echo produces a
systematic and cumulative benefit retrieval of X given A
over successive trials.

On trial 1 of extinction, A retrieves a near perfect
representation of X. However, X is not presented. Because
Minerva-AL anticipates X but X is not presented, the trace
stored to memory codes for a positive representation of A
paired with a negative or inverse representation of X (i.e., –X).
On trial 2 of extinction, A retrieves the traces from the
acquisition phase, as well as the first trace from the
extinction phase (i.e., the trace that records a negative
representation of X). Because the negative representation of
X is retrieved, retrieval of X given A is diminished. This
process repeats over the extinction trials and results in a
cumulative impairment of X|A, until X|A is approximately
zero. Critically, Minerva-AL does not expect that extinction
will make A into a conditioned inhibitor.

The simulation illustrates that Minerva-AL can learn
to anticipate an outcome given a cue and why
anticipation of the outcome diminishes with presentation
of the cue alone. We now turn to a description of
reacquisition.

Rapid reacquisition Relearning is faster than new learn-
ing, a phenomenon called rapid reacquisition (Ebbinghaus,
1885/1964). Rapid reacquisition is assessed in a three-phase
procedure (see Table 1). Phases 1 and 2 are acquisition and
extinction, respectively. Phase 3 is the reacquisition phase
where the contingency from phase 1 is re-presented. Rapid
reacquisition is observed when relearning of an already
acquired contingency is more efficient than learning of a
novel contingency.

We applied Minerva-AL to the three-phase protocol in
Table 1. The last three columns in Table 1 report the mean
number of trials that Minerva-AL needed to achieve a
criterion of X|A ≥ .95 in the reacquisition condition (and to
achieve X|B ≥ .95 in the control condition). As is shown,
Minerva-AL predicts rapid reacquisition. The model took
fewer trials to relearn the old X|A contingency than it did to
learn the novel X|B contingency.

An explanation of reacquisition picks up where our
explanation of acquisition and extinction left off. On
trial 1 of reacquisition, A retrieves a representation of X
that is a weighted sum of traces from the acquisition and
extinction phases. Because memory included traces from
both the acquisition and extinction trials (i.e., A ➔ X and
A ➔ ¬X traces, respectively), the echo reflected uncer-
tainty over whether X ought to be expected. Consequently,
the re-presentation of the A ➔ X contingency was
surprising to the model. Because memory highlights
unexpected over expected events, Minerva-AL strongly
encoded the A ➔ X contingency to memory, thus
accelerating relearning.2

Summary Whereas acquisition and extinction do not
challenge any existing theories of learning, they are a
necessary benchmark for any theory of associative learning.
In Section 2, we apply Minerva-AL to problems of
inhibition.

2 We have presented averaged learning curves. Like averaged
empirical learning curves, the model anticipates a gradual and
negatively accelerated growth in A’s ability to retrieve X. However,
query Gallistel, Balsam, and Fairhurst (2004), for example, have
argued that averaging over learners misrepresents the learning of
individuals within the group average. Namely, individual’s learning is
best described as a step function. The difference is an important one.
To explore the issue, we applied a decision rule for responding where
response strength is a logistic transformation of how well X is
retrieved by A. Using that transformation gave learning curves from
individual simulations a more steplike shape. Averaging over the
individual curves produced an averaged negatively accelerated curve,
like the one depicted in Fig. 1.
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Section 2: Inhibition

Since Pavlov (1927), researchers have examined the
construct of conditioned inhibition: an acquired tendency
of a cue to attenuate responding to an outcome. In this
section, we demonstrate that Minerva-AL predicts condi-
tioned inhibition in direct, summation, and retardation tests.

Direct test for conditioned inhibition Table 2 describes a
direct test for conditioned inhibition. The protocol includes a
training phase followed by a test. The training phase mixes
two types of trials: trials where A is presented followed by X
and trials where AB is presented without X. At test, retrieval
of X is tested given both A and B as retrieval cues.
Conditioned inhibition is observed if X|B is less than zero.

We simulated the procedure in Table 2. As is shown,
Minerva-AL retrieved a negative representation of X when
probed with B and a positive representation of X when
probed with A. Minerva-AL predicts conditioned inhibition.

In Minerva-AL, conditioned inhibition follows from a
series of covert events in memory. On the A ➔ X trials,
Minerva-AL learns that A predicts X. Consequently, Minerva-
AL anticipates X on AB trials. Because X is not presented on
AB trials, the trial-specific trace records a combination of +A,
+B, and –X. At test, B retrieves the +A, +B, and –X traces
encoded from the AB trials to retrieve -X into the echo.

Summation test for conditioned inhibition Whereas a
direct test for conditioned inhibition is sufficient in a model

anlysis, it is problematic for empirical work (see Cole,
Barnet, & Miller, 1997; Rescorla, 1969). To circumvent the
problem, researchers demonstrate conditioned inhibition
using a summation test.

Table 3 describes a summation test for conditioned
inhibition. Phase 1 restates the conditioned inhibition
protocol (i.e., intermixed A ➔ X trials and AB trials). Phase
2 presents a novel cue, C, followed by X. After, retrieval of
X given BC, CD, and C is tested. According to the logic of
the summation test, if B is a conditioned inhibitor of X, then
retrieval X given BC ought to be worse than retrieval X
given C alone (e.g., Rescorla, 1969, 1971).

We conducted 25 independent replications of the
experimental and control procedures in Table 3. We report
mean conditional recall of X given BC, CD, and C as cues.
As is shown, Minerva-AL predicts the summation test for
conditioned inhibition: X|BC < X|C. Adding B to the probe
(i.e., the conditioned inhibitor) weakens retrieval of X. Of
course, the difference in X|BC and X|C might reflect the
difference in the number of retrieval cues (two versus one,
respectively). To rule out the confound, we compared X|
BC with X|CD, where D is a neutral cue and B is a
conditioned inhibitor. The simulation shows that X|BC was
worse than X|CD. The disadvantage for X|BC confirms
that the disadvantage for X|BC relative to X|C reflects
more than a simple difference in the number of cues in the
test probe.

Fig. 1 Acquisition (trials 1–
100) and extinction (trials 101–
200). Means and standard errors
computed across 25 replications
of the procedure

Table 1 Simulation of rapid reacquisition

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Reacquisition 50 A ➔ X 50 A A ➔ X 36.2 (5.9) 19.7 (5.1) 5.1 (0.2)

Control 50 A ➔ X 50 A B ➔ X 62.2 (7.4) 32.1 (6.4) 3.8 (0.1)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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Retardation test for conditioned inhibition When a
summation test is not possible, researchers use a retardation
procedure to test condition inhibition (described in Table 4).
Like the summation test, the training phase of the
retardation test restates the conditioned inhibition protocol
(i.e., intermixed A ➔ X trials and AB trials). In contrast to
the summation test, conditioned inhibition to B is assessed
by measuring the number of trials that the subject needs to
learn X|BC to a specified criterion. If cue B is a conditioned
inhibitor, it ought to take more trials to learn X|BC than X|C.

We conducted 25 independent replications of the proce-
dures in Table 4. As is shown, Minerva-AL needed more
trials to achieve X|BC ≥ .95 than it needed to achieve X|C ≥
.95 after training with intermixed A ➔ X and AB trials (i.e.,
experimental treatment). The difference confirms that includ-
ing B as part of the retrieval cue at test retards retrieval of X.

Minerva-AL predicts conditioned inhibition in the direct,
summation, and retardation protocols for conditioned inhibi-
tion. All three simulations demonstrate that Minerva-AL can
learn to both anticipate X given a cue and to anticipate ¬X
(i.e., not X) given a cue. The next two simulations show that
Minerva-AL handles inhibition in two other protocols.

External inhibition External inhibition refers to the
situation where adding a novel cue to a test probe weakens
the expression of an established association. Table 5 summa-
rizes the external inhibition protocol. In a training phase, A is
presented followed by X (i.e., simple acquisition). Afterward,
retrieval of X|A and retrieval of X|AB are tested. In this case, B
is a neutral an untrained cue. External inhibition is observed
when retrieval of X|A is greater than retrieval of X|AB.

As is shown in Table 5, Minerva-AL anticipates external
inhibition: X|A > X|AB. The orthodox explanation of
external inhibition is that adding a novel cue to the test
probe forces a generalization decrement (e.g., Pavlov,
1927). Minerva-AL’s explanation of the effect is slightly
different. Presenting AB causes a different activation of
traces in memory than does A alone. The difference in trace
activations drives the differences in Table 5.

Latent inhibition Latent inhibition is observed when
preexposure to a cue slows subsequent learning with it
(Mackintosh, 1975; Rescorla, 1971). We simulated a simple
latent inhibition protocol with a preexposure phase followed
by a test phase (see Table 6). In the preexposure phase, A is

presented alone (i.e., without consequence). At test, A is
presented followed by X. At test, learning of the X|A
contingency is measured by the logic of a retardation test.
Latent inhibition is observed if acquisition for X|A is slower
than in a control condition excluding the preexposure phase.

We conducted 25 independent replications of the latent
inhibition procedure and measured the number of trials that
Minerva-AL took in the test phase until X|A ≥ .95. As is
shown in Table 6, the number of trials to reach X|A ≥ .95
increased with the number of preexposure trials. The result
is the latent inhibition effect.

Minerva-AL explains latent inhibition as a consequence
of proactive interference. Each preexposure trial leaves a
trace in memory: A paired with noise. At test, A retrieves
those traces, including the noise that interferes with the
resolution of X in the echo. Later, when training A ➔ X, the
noise in the preexposure traces is weighed out of the echo.

Hall and Channell (1985) demonstrated that latent inhibi-
tion is context specific by preexposing A in one context and
then testing acquisition of A ➔ X in another (see also Nelson
& Sanjuan, 2006). We resimulated the latent inhibition
protocol from Table 6, but, in the preexposure phase, A was
presented in one context, and in the experimental phase, the
A ➔ X contingency was presented in a different context (i.e.,
this was accomplished by setting the usual context field
included in the probes for phase 1 to zero and adding a new
context vector). The rate at which Minerva-AL acquired the
X|A contingency was substantially less affected by the
preexposure manipulation. We conclude that Minerva-AL
acknowledges the context-specific nature of latent inhibition.

Hall–Pearce negative transfer Hall and Pearce (1979)
generated an example of latent inhibition where, in the
preexposure phase of the protocol, A is presented, followed
by a muted version of X— rather than A being presented
alone (see also Ayres, Moore, & Vigorito, 1984). We
simulated this procedure by replicating the latent inhibition
protocol in Table 6, but instead of presenting A alone during
the preexposure phase, we presented the model with A
followed by a muted version of X. To mute X, we multiplied
its representation by a weight of 0.1, thus rewriting each of
the 1.0 values in the vector for X as values of 0.1. In the
second phase of the protocol, we presented X at full strength
(i.e., as we did in the preceding two simulations). The
simulation reproduced the Hall and Pearce effect. Namely,
following preexposure to the A followed by X(.1), it took
more trials to reach X|A ≥ .95 in phase 2 of the procedure
than following preexposure to A followed by X(1.0). The
difference held over all values of L.3

3 Savastano, Yin, Barnet, and Miller (1998) have demonstrated that
the Hall–Pearce negative transfer result weakens when the timing of
the cue–outcome pairing is varied at training at test. Minerva-AL has
no mechanism for modeling the timing of cues and outcomes and, so,
is unable to model this aspect of the result.

Table 2 Simulation of the direct test for conditioned inhibition

L

Training Test .33 .67 1.00

50 A ➔ X / 50 AB X|A .93 (.02) .97 (01) .99 (.01)

X|B -.16 (.01) -.21 (.02) -.32 (.04)

Note. Means and standard errors computed over 25 independent
replications. Standard errors are in parentheses.

Learn Behav (2012) 40:61–82 67



Summary Minerva-AL captures conditioned inhibition in
the direct, summation, and retardation protocols. It captures
external inhibition and latent inhibition. It captures the
Hall–Pearce negative transfer effect.

Section 3: Cue competition

A hallmark of associative learning is that concurrently
presented cues compete for associative strength. The principle
is hardwired into the learning rules of many models (e.g.,
Rescorla–Wagner) but is not hardwired into Minerva-AL. In
this section, we show that Minerva-AL appreciates the
complications of cue competition effects in learning.

Blocking Blocking is the classic demonstration of cue
competition. A blocking protocol includes two successive
training phases followed by a test phase (Kamin, 1969;
Rescorla & Wagner, 1972). In phase 1, the cue, A, is
presented, followed by an outcome, X. In phase 2, the cue
compound, AB, is presented, followed by X. Following
training, retrieval of X|B is tested. Table 7 summarizes the
procedure and its control conditions. Blocking is observed if
retrieval of X given B is weakest in the blocking condition.

We simulated the blocking and control procedures in
Table 7. As is shown, Minerva-AL anticipated the blocking
effect: X|B was smaller in the blocking condition than in
either of the control conditions. The size of the blocking
effect (i.e., the difference in X|B between the blocking and
control conditions) correlates with L.

Minerva-AL’s explanation for blocking is clear. In phase
1, A is established as a retrieval cue for X. In phase 2, AB
retrieves X. Because AB retrieves X, the biggest discrepancy
between the echo and the event vector, E = A + B + X, is the
presence of B. Consequently, the trace stored includes a

strong representation of B paired with a weak representation
of X. Consequently, at test, B retrieves a weak representa-
tion of X. The simulation presents an explanation of
blocking that follows from the storage and retrieval of
instances from memory.

Overshadowing In an overshadowing experiment, two
cues, A and B, are presented together, followed by an
outcome, X. Typically, one cue, B, is made more salient (e.g.,

strations, the degree of attenuation is proportional to the
relative saliency of the damped and undamped cues (Kamin,
1969; Mackintosh, 1971).

To model overshadowing, we represented cue salience
by introducing saliency weights, α. To illustrate, if cue A =
[1.0, 1.0, 1.0, 1.0] and αA = 0.1, then αA × A = [0.1, +0.1,
0.1, +0.1]. We constrain saliency weights between 0.0 and
1.0; the smaller α is, the less salient the cue. The
manipulation of cue saliency is identical to our previous
manipulation of outcome saliency to simulate the Hall–
Pearce negative transfer effect.

We simulated overshadowing using a training/test proto-
col. In the training phase, AB was presented followed by X.
We varied the cue salience of A (i.e., αA = 0.1, 0.6, and 1.0)
while holding the cue salience of B constant (i.e., αB = 1.0).
The procedure is summarized in Table 8. If Minerva-AL
predicts overshadowing, X|A ought to be greater in the
control condition where A is trained independently of B
than in the three experimental conditions where A is trained
with B. Moreover, the strength of overshadowing ought to
increase as the disparity between the saliency of A and B is
increased.

Table 4 Simulation of retardation test for conditioned inhibition

L

Condition Training Test .33 .67 1.00

Experimental 50 A ➔ X / 50 AB BC ➔ X 46.6 (3.7) 16.3 (0.9) 5.6 (0.7)

Control C ➔ X 29.4 (1.5) 13.2 (1.0) 4.2 (0.2)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 3 Simulation of summation test for conditioned inhibition

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Summation 50 A ➔ X / 50 AB 50C ➔ X X|BC .13 (.02) .18 (.02) .05 (.07)

Control (1) 50 A ➔ X / 50 AB 50C ➔ X X|CD .93 (.01) .92 (.01) .89 (.02)

Control (2) 50 A ➔ X / 50 AB 50C ➔ X X|C .99 (.00) .99 (.00) 1.0 (.00)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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louder, brighter) than the other. Overshadowing is observed if
the strength of conditioning for the less salient cue A is
attenuated when trained in compound with B. In demon-



Table 8 shows the results of the simulations as a function
of L and αA. Consistent with the overshadowing effect, X|A
was weaker when A was trained in compound with B, and
the size of the overshadowing effect increased with the
difference in saliency between cues A and B.

Overexpectation An overexpectation effect is observed
when responding to a pair of well-established cues is
diminished after they have then been given additional
compound training (e.g., Kremer, 1978). Table 9 summa-
rizes the protocol. In phase 1 of training, A ➔ X and B ➔ X
trials are intermixed. In phase 2 of training, AB is presented
followed by X. Overexpectation is observed if retrieval of
X|A is worse following AB ➔ X versus AC ➔ X training or
following no additional training in phase 2. The overex-
pectation effect is of interest here because it escapes any
straightforward rational explanation: It is not immediately
clear why cue A might be made a worse predictor of X as a
consequence of additional exposure to the AB ➔ X
contingency.

Table 9 presents the results of the simulation. As is
shown, Minerva-AL predicts the overexpectation effect:
X|A is smaller in the overexpectation condition (i.e.,
following the AB ➔ X training in phase 2) than in either
of the control conditions. The size of the overexpectation
effect correlates with L.

Minerva-AL explains overexpectation to be a natural
outcome of operations in memory. In phase 1, the model
learns the A ➔ X and B ➔ X contingencies. In phase 2, AB
retrieves an especially clear representation of X. Because
the representation of X is especially clear, discrepancy
encoding records that A and B were paired with what would
seem to be a weakened or less salient presentation of X. At
test, these traces weaken the representation of X that is

retrieved into the echo. That is, overexpectation of X in
phase 2 makes A a worse retrieval cue for X.

Superconditioning Superconditioning is a corollary of
overexpectation. In superconditioning, pairing a novel cue
with a conditioned inhibitor benefits, rather than impedes,
learning of a novel cue (Williams & McDevitt, 2002). The
effect occurs because the conditioned inhibitor retrieves an
expectation that the outcome will not occur. Consequently,
when the outcome does occur it is “super surprising.”

Table 10 shows a superconditioning procedure. Phase 1
intermixes A ➔ X and AB trials. In phase 2, BC is presented
followed by X, or in a control condition, CD is presented
followed by X. Superconditioning is observed when X|C is
greater following BC➔ X training in phase 2 of the procedure
than following CD ➔ X training in phase 2 of the procedure.

Simulation results are presented in the final three
columns of Table 10. As is shown, learning of the X|C
contingency was better in the superconditioning condition
(i.e., after C had been paired with a conditioned inhibitor, B,
in phase 2 of training), as compared with the control
condition (i.e., after C had been paired with a neutral cue,
D, in phase 2 of training). Minerva-AL anticipates the
superconditioning effect.

Minerva-AL’s explanation for superconditioning high-
lights the discrepancy encoding operation. In phase 2 of
training, B retrieved an inverse representation of X into the
echo. Consequently, presentation of X was more surprising
to the model than if it had no expectations at all. The
violation of expectation resulted in strong encoding of the
unexpected events: C because it was a novel event and X
because the model expected it to not occur. Because C and
X were both unexpected, they were strongly encoded,
thereby accelerating learning of the X|C contingency.

Table 6 Simulation of latent inhibition

L

Condition Training Test .33 .67 1.00

0 pretrials A ➔ X 32.1 (1.7) 13.4 (1.0) 6.3 (0.5)

10 pretrials 10 A A ➔ X 54.2 (3.0) 31.2 (3.3) 6.2 (0.5)

30 pretrials 30 A A ➔ X 61.6 (4.9) 35.8 (5.6) 6.4 (0.3)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 5 Simulation of external inhibition

L

Condition Training Test .33 .67 1.00

External inhibition 50 A ➔ X X|AB .80 (.02) .85 (.02) .90 (.02)

Control 50 A ➔ X X|A .98 (.00) .99 (.00) 1.0 (.00)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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Summary Minerva-AL models cue competition effects.
The ability is clear even though the model does not include
an explicit rule for how individual cues ought to be handled
when presented individually and in compound. In the section
on discrimination that follows, we elaborate on this point to
show that, in spite of no explicit rule for handling single cues
and compounds, Minerva-AL can keep track of its expect-
ations in a way that matches the behavior of real learners.

Section 4: Discrimination and generalization

Discrimination is an ability to respond differently to
alternate albeit similar and related cues. The classic
demonstration of discrimination involves presentation of
one cue, A, followed by X and another cue, B, without X.
Discrimination is observed when A elicits anticipation of X
but B does not.

We applied Minerva-AL to the simple discrimination of
nonoverlapping cues procedure. The simulation involved
50 blocks, each of which had two trials. One trial presented
A followed by X. The other trial presented B (without X).
Following each block, we measured X|A and X|B.

Figure 2 shows X|A and X|B over the 50 blocks for L =
.67. As is shown, early in the procedure, Minerva-AL
expected that X would follow A or B. With additional
training, the errant expectation was resolved, and discrimi-
nation was achieved by about block 20, where X|A ≈ 1 and
X|B≈0. The trajectory of discrimination is consistent with
data from laboratory experiments (e.g., Redhead & Pearce,
1995). We conclude that Minerva-AL handles simple
discrimination of nonoverlapping cues.

The simulation shows that Minerva-AL discriminates
reinforced from unreinforced cues. However, a competent
model ought to be capable of discriminating cues that are
presented singly (i.e., elemental cues) and in compound
(i.e., configural cues). For example, the model should
learn that A predicts X when paired with B, but not when
it is presented alone. Moreover, and more critically, the
model ought to learn similar nonlinear discriminations
such as negative patterning. To better address discrimina-
tion learning, we applied Minerva-AL, first, to the linear
positive-patterning problem and, second, to the nonlinear
negative-patterning problem.

Positive patterning Positive patterning represents a linear
discrimination. In positive patterning, the learner must
respond to a cue compound, AB, without responding to its
constituents (Pavlov, 1927; Wasserman & Miller, 1997;
Young, Wasserman, Johnson, & Jones, 2000). The discrim-
ination ensures that the model recognizes differing sched-
ules to a cue presented alone and to that same cue presented
in a compound.

We applied Minerva-AL to the positive-patterning
procedure. In each of 50 successive blocks, we presented
the model with intermixed trials of AB ➔ X, A, and B. As is
shown in Fig. 3, Minerva-AL learned the discrimination: It
retrieved X given AB but did not retrieve X given A or X
given B, and discrimination developed quickly and grew
increasingly strong with practice.

Positive pattern discrimination is a linear discrimination
problem. This means that the problem can be solved by
responding if both A and B are present and not responding
if only one is present. A more difficult nonlinear discrim-

Table 7 Simulation of blocking

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Blocking 50 A ➔ X 50 AB ➔ X X|B .32 (.01) .30 (.01) .26 (.02)

Control (1) 50C ➔ X 50 AB ➔ X X|B .65 (.01) .76 (.01) .89 (.01)

Control (2) 50 AB ➔ X X|B .66 (.02) .75 (.01) .85 (.01)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 8 Simulation of overshadowing

L

Condition Training Test .33 .67 1.00

Control (αA=1.0) 50 A ➔ X X|A .98 (.00) 1.0 (.00) 1.0 (.00)

Experimental (αA=1.0) 50 AB ➔ X X|A .63 (.02) .79 (.02) .88 (.02)

Experimental (αA=0.6) 50 AB ➔ X X|A .56 (.02) .72 (.02) .85 (.02)

Experimental (αA=0.1) 50 AB ➔ X X|A .50 (.03) .63 (.03) .82 (.02)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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ination problem is negative patterning that requires the
learner to discriminate response patterns in a more
interesting fashion.

Negative patterning Negative patterning is the opposite
of positive patterning. In the protocol, a learner must
anticipate X following presentation of A or B in isolation
without anticipating X following presentation of A and B in
compound (e.g., Pearce, 1994; Wasserman & Miller, 1997;
Young et al., 2000). The protocol is important for model
evaluation because it requires the learner to compute a
nonlinear discrimination—a feat that not all models are
capable of (see Miller et al., 1995).

Figure 4 shows Minerva-AL’s performance in a negative-
patterning protocol that presented one example each of an A
➔ X, B ➔ X, and AB contingency in each of 50 successive
three-trial blocks. As is shown, Minerva-AL learned to
anticipate X|A and X|B without anticipating X|AB. The
ability suggests that Minerva-AL learned to respond
selectively to the situations where A and B were presented
in isolation.

Negative patterning is important because a simple
elemental model of conditioning that assumes a simple
relationship between stimuli presented singly and in
compound will fail to predict the result. The failure follows
because such models treat the associative strength of a
compound to be a sum of associative strengths to the
constituent elements. Thus, the response to AB ought
always to be greater than the responses to A and B alone.
As such, the linear discrimination of positive patterning is
acknowledged to be easier to learn than the nonlinear
discrimination of negative patterning (e.g., Bellingham,
Gillette-Bellingham, & Kehoe, 1985; Rescorla, 1973;
Young et al., 2000). We note that Minerva-AL anticipates

easier learning of the positive- than of the negative-
patterning problems (see Figs. 3 and 4).

Biconditional discrimination In a biconditional discrimi-
nation protocol, the learner is required to learn four
contingencies: AB ➔ X, CD ➔ X, BC ➔ ¬X, and AD ➔

¬X. Critically, the four individual cues—A, B, C, and D—are
reinforced and unreinforced equally often over the course of
the experiment. Thus, to learn the discrimination, the subject
must learn the relationships between the cue compounds and
the outcome. Learning theories that assume associative
learning from stimulus elements to outcomes with the
associative strength of a compound equal to the sum of
associative strengths of its elements cannot accommodate the
result (Lober & Lachnit, 2002).

We applied Minerva-AL to the biconditional discrimina-
tion problem. Figure 5 presents the simulation results.
Following exposure to the contingencies, Minerva-AL
learned the contingencies: X|AB and X|CD were both equal
and greater than both X|BC and X|AD.

Animals learn the negative discrimination faster than the
biconditional problem (Harris, Livesey, Gharaei, &Westbrook,
2008; although Harris & Livesey, 2008, show that the
difference did not hold with humans). Inspection of the results
with the negative patterning and biconditional discriminations
shows that Minerva-AL mispredicts the learning advantage
for negative over biconditional pattern discriminations (see
Figs. 4 and 5).

Discrimination of cues presented singly and in cue
compounds Thus far, we have simulated protocols—not
data. In the next two simulations, we show not only that
Minerva-AL accomplishes nonlinear discrimination, but
also that it can match the details of empirical data. As a
test base, we use two procedures from Redhead and

Table 10 Simulation of superconditioning

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Super-conditioning 50 A ➔ X / 50 AB 50 BC ➔ X X|C .81 (.02) .88 (.01) .95 (.01)

Control 50 A ➔ X / 50 AB 50 CD ➔ X X|C .67 (.01) .77 (.02) .85 (.02)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 9 Simulation of overexpectation

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Overexpectation 25 A ➔ X / 25 B ➔ X 50 AB ➔ X X|A .80 (.01) .80 (.02) .72 (.04)

Control (1) 25 A ➔ X / 25 B ➔ X 50AC ➔ X X|A .96 (.01) .98 (.01) .99 (.00)

Control (2) 25 A ➔ X / 25 B ➔ X X|A .98 (.00) 1.0 (.00) 1.0 (.00)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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Pearce’s (1995) work. The first procedure had a preexpo-
sure phase that was followed by a test phase. The
preexposure phase included 48 trials in which A was
presented 8 times, AB was presented 8 times, and ABC
was presented 32 times. The test phase that followed had 10
blocks. Each block included 48 trials in which A was
presented 8 times followed by X, AB was presented 8 times
followed by X, and ABC was presented alone 32 times (i.e.,
without X). Redhead and Pearce’s results are reproduced in
the inset of Fig. 6. As is shown, X|ABC < X|AB < X|A.

We simulated Redhead and Pearce’s (1995) procedure for
various levels of L. The results of the simulations are
presented in the main panel of Fig. 6 for L = .1. As is
shown, Minerva-AL reproduced the main features of
Redhead and Pearce’s data. First, consistent with Redhead

and Pearce’s data, X|A > X|AB. Second, X|ABC = 0 (i.e.,
ABC did not retrieve X). The simulation shows that
Minerva-AL can discriminate cues when presented sepa-
rately from when they are presented in compound with
either one or two others.

In a second experiment, Redhead and Pearce (1995)
increased the number of discriminations presented concur-
rently. A preexposure phase had 54 trials that presented A, B,
C, AB, AC, and BC 3 times each and ABC 36 times. The test
phase that followed had four blocks. Each block included 54
trials. In each block, A, B, C, AB, AC, and BC were each
presented 3 times followed by X and the compound ABC
was presented 36 times without X. Redhead and Pearce
summarized their data by comparing learning of single cues,
cues presented in pairs, and the three cues presented in a
complete compound (see the inset of Fig. 7). Responding
was strongest to single cues, intermediate to cue pairs, and
weakest to the full compound.

Fig. 5 Simulation of biconditional discrimination. Means and
standard errors computed across performance in 25 replications of
the procedure, L = .67

Fig. 4 Simulation of negative patterning. Means and standard errors
computed across performance in 25 replications of the procedure,
L = .67

Fig. 3 Simulation of positive patterning. Means and standard errors
computed across performance in 25 replications of the procedure,
L = .67

Fig. 2 Simulation of simple discrimination learning: A ➔ X and B ➔
¬X. Means and standard errors computed across performance in 25
replications of the procedure
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We conducted 25 replications of the procedure for
various levels of L. The results of the simulations are
presented in Fig. 7 for L = .1. The model reproduced the
major features of Redhead and Pearce’s (1995) results. The
discrimination between the individual cues, {A, B, C}, and
the full compound {ABC} was acquired faster than the
discrimination between pairs of cues {AB, BC, AC} and the
full compound {ABC}. In addition, the single cues were the
worst at retrieving X in block 1 but were the best cues for
retrieving X in blocks 2, 3, and 4. This pattern of learning
by the model matched the pattern in Redhead and Pearce’s
subjects. In previous work, Pearce (1994) applied his
configural theory of learning to the procedures and
generated approximately the same predictions as we have
(compare the main panel in Fig. 7 with the right panel of
Pearce’s, 1994, Fig. 12).4

In Minerva-AL, traces record the events of individual
trials. At retrieval, the similarity measure distinguishes the
traces. For example, a probe that includes only A activates
the traces in memory that code for A more strongly than
traces that code for A in combination with B, C, and so on.
By retrieving traces conjoining specific cues and outcomes,
the theory exploits memory for individual trials and
discriminates those trials in which a cue was presented
alone and those in which it was presented in compound.

Minerva-AL’s ability to model discrimination of cues
when presented in various configurations follows from the

model’s principle of instance-based representation. We now
turn to a related problem of generalization.

Generalization Generalization is the complement of
discrimination. Generalization occurs when the response to a
trained cue transfers to another, similar cue. For example, after
it is learned that a tone of frequency f predicts an imminent
shock, a tone of frequency f ' will also elicit an avoidance
response. Generally, the greater the similarity between the
original trained cue, f, and its tested substitute, f ', the more
complete is generalization (Moore, 1972).

We applied Minerva-AL to a simple generalization
protocol. In a training phase, B was presented, followed
by X. In a test phase, we evaluated the ability of probes that
approximated B to retrieve X. The probes that approxi-
mated B were vectors of 120 elements where elements i
through (i + 20) were set to 1 (where i is incremented
between 1 through 20), with all other elements set to zero.
Within the scheme for stimulus representation we have
been using, these vectors are “in between cues A and C.”
We used B as the training cue instead of A because it
allowed us to model generalization to probes that over-
lapped early and late numbered features of B.

Figure 8 shows generalization to B' averaged over 25
independent replications where L = .15. As is shown,
generalization (i.e., retrieval of X) improved with the
proportion of features that B' shared with B.

Minerva-AL’s explanation of generalization shares its
key premise with an explanation given by Pearce (1994).
Namely, the proportion of elements that it shares with a
previously established cue, B, determines the magnitude of
generalization to the test probe, B'.

Summary We applied Minerva-AL to several discrimi-
nation problems. The model distinguishes the contingencies
of a cue presented singly and in compounds. Minerva-AL

Fig. 7 Simulation of Redhead and Pearce’s (1995) Experiment 2.
Means computed across performance in 25 replications of the
procedure, L = .1

4 We have fit Redhead and Pearce’s (1995) data. Myers, Vogel, Shin,
and Wagner (2001) have published data that contradict Redhead and
Pearce. Namely, they found better discrimination of AB versus ABC
than of A versus ABC. Thus, our fit of Redhead and Pearce still leaves
Minerva-AL’s ability to model discrimination with some degree of
uncertainty.

Fig. 6 Simulation of Redhead and Pearce’s (1995) Experiment 1.
Means computed across performance in 25 replications of the
procedure, L = .1
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accomplishes discrimination by selective retrieval of traces
containing contingencies that match the test probe. This
ability is a natural outcome for a model that treats
associative learning as a corollary of the storage and
retrieval of instances from memory.

Section 5: Retrospective revaluation

Most classical theories of learning assert that a cue must be
present to acquire or lose associative strength with an outcome
(e.g., Mackintosh, 1975; Pearce & Hall, 1980; Rescorla &
Wagner, 1972; Wagner, 1981). However, demonstrations of
retrospective revaluation contradict that assertion.

One example of retrospective revaluation is backward
blocking. A backward blocking protocol has two successive
training phases followed by a test. In phase 1 of training, a
compound cue, AB, is presented, followed by an outcome,
X. In phase 2 of training, A is paired with X. After phase 2
of training, retrieval of X given B is assessed. Backward
blocking is observed if, at test, retrieval of X given B is
worse than if phase 2 of training had not occurred. The
procedure is shown in the top row of Table 11 (rows 2 and 3
in Table 11 show relevant control procedures).

At first blush, backward blocking implies symbolic
inference: “I learned in phase one that the combination of

A and B predicts X. But, in phase 2, I learned that A alone
predicts X. Given the two contingencies, I can infer that,
despite initial appearances, B did not predict X in phase 1
after all.” Whereas inferential reasoning might provide a
sound explanation of the result with humans, inferential
reasoning is a suspect explanation for learning in rats
(Miller & Matute, 1996). Below, we explain retrospective
revaluation without reasoned inference.

Van Hamme and Wasserman (1994) were the first to
solve the problem of retrospective revaluation when they
adapted the Rescorla–Wagner model to explain backward
blocking. In the adapted model, phase 1 of training
establishes A as a retrieval cue for B (i.e., a within-
compound association). In phase 2, A activates B and, thus,
opens B for learning. Van Hamme and Wasserman forced
the backward-blocking result by applying a positive-
learning rate to update the A ➔ X association and a
negative-learning rate to update the B ➔ X association.
Because the modified Rescorla–Wagner model does not
include a process for inferential reasoning, it finesses the
problem of attributing rationality to species in which such
capabilities are suspect.

Whereas the thrust of Van Hamme and Wasserman’s
(1994) explanation is sound, their computational solution
was problematic because absent and presented cues had to
be identified for the model and different learning parame-
ters had to be applied to the two kinds. Witnauer and Miller
(2011) have since resolved the problem and showed that the
model handles retrospective revaluation, including second-
order revaluation.

In the next simulation, we show that Minerva-AL also
meets the challenge. Although we have simulated backward
blocking, recovery from blocking, and backward condi-
tioned inhibition elsewhere (see Jamieson, Hannah &
Crumpt 2010), we re-present those simulations here.
Afterward, we extend our previous analysis to include
additional examples of retrospective revaluation including
second-order revaluation.

Backward blocking We simulated a standard backward-
blocking procedure. The procedure included two successive
training phases, followed by a test. In training phase 1, AB
was presented followed by X. In training phase 2, A was

Fig. 8 Simulation of stimulus generalization. Means and standard
errors computed across performance in 25 replications of the
procedure, L = .1

Table 11 Simulation of backward blocking

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Backward blocking 50 AB ➔ X 50 A ➔ X X|B .43 (.03) .21 (.06) .07 (.01)

Control (1) 50 AB ➔ X 50C ➔ X X|B .64 (.02) .76 (.02) .89 (.01)

Control (2) 50 AB ➔ X X|B .60 (.02) .78 (.02) .90 (.01)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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presented followed by X. Following phase 2, retrieval of X
given B was tested. The design is shown in Table 11 along
with two control conditions. If Minerva-AL accommodates
backward blocking, retrieval of X given B will be weaker in
the backward-blocking condition than in either of the
control conditions.

We simulated the procedure in Table 11, 25 independent
replications of each condition for each of three levels of the
encoding parameter L. As is shown, Minerva-AL antici-
pates the backward-blocking effect. Retrieval of X given B
was weaker in the backward-blocking than in the control
conditions. As in the simulation of the forward-blocking
effect, the size of the backward-blocking effect increased as
a function of L.

Minerva-AL explains backward blocking as a conse-
quence of discrepancy encoding. In phase 1 of training, A is
established as a retrieval cue for B (i.e., a within-compound
association). Consequently, in phase 2, A retrieved B into
the echo. Because B was retrieved into the echo but B was
not presented, the trace stored to memory recorded the
absence of B (i.e., -B) paired with the presence of X (i.e.,
+X). This information established the conditions for
producing the retrospective revaluation result at test.

When B was presented at test, the traces that contained
its inverse (i.e., the traces that coded –B) were activated.
Because the similarity of B to –B is a negative value, and
during retrieval a trace is multiplied by its activation (see
Eq. 3), traces with a negative representation of B and a
positive representation of X were inverted (i.e., a trace that
joined -B and +X in memory was activated as +B and –X).
The sum of the inverted traces produced a negative
representation of X in the echo, thus producing the
backward blocking result (i.e., B retrieves -X).

An important feature of the model’s explanation for
backward blocking is that the retrieval process produced an
inverse representation of X in the echo even though the
memory matrix contained no inverse representations of X
itself. The example underscores the point that in Minerva-
AL, a demonstration of learning cannot be identified as an
encoding or retrieval effect but, rather, must be considered
to be an interaction of the two information-processing
stages.

Recovery from blocking Another example of retrospec-
tive revaluation is recovery from blocking. A recovery from
blocking experiment includes three training phases fol-
lowed by a test. In phase 1 of training, A is presented,
followed by X. In phase 2 of training, AB is presented,
followed by X. In phase 3 of training, A is presented alone.
Recovery from blocking is observed when, following all
three phases of training, B behaves as a conditioned exciter
of X (e.g., Blaisdell, Gunther, & Miller, 1999). The result is
surprising inasmuch as learning of the B ➔ X relationship is
blocked following phase 2 of training but is later expressed

following extinction of the unblocked cue. For our
purposes, the recovery from blocking result is important
because it demonstrates that an associatively activated cue
(i.e., B in phase 3 of the procedure) can become a
conditioned exciter rather than a conditioned inhibitor of a
presented outcome (the result we demonstrated in our
simulation of backward blocking).

We applied Minerva-AL to a recovery from blocking
procedure. The procedure had three successive training
phases followed by a test. In phase 1 of training, A was
presented, followed by X. In phase 2 of training, the
compound cue, AB, was presented, followed by X. In phase
3 of training, A was presented alone. Following training,
retrieval of X given B was tested. The protocol and control
procedures are summarized in Table 12. Recovery from
blocking is observed if retrieval of X given B is greater than
zero in the recovery condition and greater in the recovery
condition than in either of the control conditions.

We simulated the three conditions in Table 12, 25
replications for each protocol for each of three levels of
the encoding parameter L. Minerva-AL produced the
recovery from blocking effect: Retrieval of X given B was
greater than zero in the recovery condition and was greater
in the recovery condition than in either of the control
conditions. The magnitude of the recovery effect correlates
with L.

Our explanation of recovery from blocking follows from
the dynamics of storage and retrieval in Minerva-AL. Phase
1 established A as a retrieval cue of X, which blocked
learning of the X|B contingency in phase 2. In phase 3, A
retrieved both B and X into the echo. Because neither B nor
X was presented, memory recorded a positive representa-
tion of A paired with negative representations of both B and
X. At test, B retrieved the phase 3 traces that coded +A, -B,
and -X. Because traces are multiplied by their activations at
retrieval (see Eq. 3), those traces were reinverted at
retrieval. The reinverted traces were summed to yield a
positive representation of X in the echo.

Backward conditioned inhibition Backward conditioned
inhibition (backward inhibition) is yet another example of
retrospective revaluation. A backward inhibition protocol
includes two training phases followed by a test. In phase 1
of training, the learner is presented with pairings of a
compound cue, AB, presented alone. In a subsequent
training phase, one element of the compound (i.e., A) is
paired with an outcome, X. Following training, retrieval of
X given B is tested. Backward inhibition is observed when
the learner behaves as though B signals that X will not
occur (i.e., when B behaves as a conditioned inhibitor of X).

Backward inhibition is important to the study of
associative learning for the same reason that backward
blocking and recovery from blocking are important: The
result demonstrates that the associations of an unpresented
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but associatively activated cue can be modulated when
brought to mind by a presented cue.

We applied Minerva-AL to the backward inhibition
procedure. The procedure included two successive training
phases followed by a test. In phase 1 of training, compound
cue AB was presented, followed by nothing. In phase 2 of
training, Awas presented, followed by X. Following phase 2,
retrieval of X given B was tested. The design also included
two control conditions (see Table 13). If Minerva-AL
accommodates backward inhibition, retrieval of X given B
should be less than zero in the backward inhibition procedure
and should be reliably more negative in the backward
inhibition condition than in either of the control procedures.

We simulated the three conditions in Table 13, 25
independent replications for each of three levels of the
encoding parameter L. As is shown, Minerva-AL produced
the backward inhibition effect. First, retrieval of X given B
was less than zero in the backward inhibition condition.
Second, retrieval of X given B was less in the backward
inhibition condition than in either of the control conditions.
Consistent with the preceding simulations, the size of the
backward-blocking effect was correlated with L.

Urcelay, Perelmuter, and Miller (2008) evaluated back-
ward inhibition using a summation test. In phase 1 of
training, AB was presented without an outcome. In phase 2,
A ➔ X trials were intermixed with C ➔ X trials. At test,
retrieval of X given C, X given BC, and X given CD was
tested. They reasoned that if B had become a conditioned
inhibitor, X|BC ought to be less than both X|CD and X|C.
The experiment confirmed the predictions. We applied
Minerva-AL to Urcelay et al.’s procedure. Minerva-AL
made the appropriate prediction (i.e., X|BC < X|CD < X|C).

Minerva-AL’s explanation of backward conditioned
inhibition is coherent with its explanation of backward
blocking and recovery from blocking. In phase 1 of
training, A was established as a retrieval cue for B (i.e., a
within-compound association). Consequently, in phase 2 of
training, A retrieved B. Because B was retrieved but B was
not presented, a trace stored to memory included a negative
representation of B (i.e., –B) paired with a positive
representation of X. At test, presenting B to memory caused
those traces to invert (i.e., the –B and +X traces were
inverted as+B and –X traces at retrieval). The activated
traces were summed in the echo and yielded an inverse
representation of X. That is, B retrieved –X. Thus, as with
backward blocking and recovery from blocking, Minerva-
AL asserts that backward conditioned inhibition represents
an interaction between encoding and retrieval processes.

Recovery from overexpectation Recovery from overex-
pectation is yet another demonstration of retrospective
revaluation that builds on the overexpectation effect. A
recovery from overexpectation protocol includes three
training phases followed by a test. Training phase 1
involves intermixed presentations of A ➔ X and B ➔ X.
Training phase 2 involves presentations of AB ➔ X. Phase 3
of training involves presentations of A alone (i.e., without
X). The procedure and its control conditions are summa-
rized in Table 14. Recovery from overexpectation is
observed when X|B is greater in the recovery condition
than in the two control conditions.

We conducted 25 replications of the procedure for each
of three levels of L = .33, .67, and 1.0. We increased the
amount of noise introduced to the echo from the interval
±0.001 to the interval ±0.05. As is shown in Table 14,

Table 12 Simulation of recovery from blocking

Training L

Condition Phase 1 Phase 2 Phase 3 Test .33 .67 1.00

Recovery 50 A ➔ X 50 AB ➔ X 200 A X|B .49 (.03) .80 (.02) .99 (.01)

Control (1) 50 A ➔ X 50 AB ➔ X 200C X|B .33 (.01) .37 (.02) .37 (.01)

Control (2) 50 A ➔ X 50 AB ➔ X X|B .33 (.01) .32 (.01) .29 (.01)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 13 Simulation of backward conditioned inhibition

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Backward inhibition 50 AB 50 A ➔ X X|B -.15 (.03) -.53 (.06) -.91 (.01)

Control (1) 50 AB X|B .00 (.00) .00 (.00) .00 (.00)

Control (2) 50 AB 50C ➔ X X|B .11 (.01) .08 (.01) .05 (.01)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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Minerva-AL anticipates the recovery from the overex-
pectation effect: X|B is greater in the recovery than in the
control condition. The advantage for X|B in the recovery
condition relative to the first control condition demon-
strates that recovery of B occurs by extinguishing one of
its previously partnered cues (i.e., A), but not from
extinguishing an unpartnered novel cue (i.e., C). The
advantage for X|B in the recovery condition over the
second control condition demonstrates the advantage for
X|B that follows from extinguishing A in the recovery
condition.

Minerva-AL explains recovery from overshadowing in
the same way that it explains recovery from blocking.
When A is presented in phase 3 of the procedure, it
retrieves a representation of both B and X (i.e., because of
the within-compound association formed between A and B
in phase 2 of the procedure). Because B and X are both
expected but neither is presented, the trace stored to
memory records an inverse representation of the two. At
test, B activates those traces, but because B has a negative
similarity to its inverse and because traces are multiplied by
their activation at retrieval (see Eq. 3), the –B and –X traces
are reinverted as+B and +X traces at retrieval. Those traces
are summed into the echo to yield a more positive
representation of X than otherwise would have been
retrieved.

Recovery from overshadowing A fifth demonstration of
retrospective revaluation is recovery from overshadowing.
Overshadowing is observed when retrieval of X given A is
weaker following AB ➔ X training than following A ➔ X
training. Recovery from overshadowing is observed when,
subsequently, extinguishing B improves X|A. (e.g., Matzel,
Schachtman & Miller 1985).

We simulated recovery from overshadowing with the
procedure in Table 15. In phase 1 of training, AB was
presented, followed by X (αA = .7). In phase 2 of training,
we extinguished B. At test, we measured retrieval of X
given A. If recovery from overshadowing occurs, A will
retrieve a better representation of X in the recovery
condition than in the control condition in Table 15.

We conducted 25 replications of each procedure for three
values of L. As is shown in Table 15, Minerva-AL
anticipates recovery from overshadowing: X|A was greater
following extinction of B.

Minerva-AL’s explanation of recovery from over-
shadowing is consistent with its explanations for other
examples of retrospective revaluation. In training phase
1, a within-compound association between AB and X is
established. Thus, in phase 2, presenting B brings both A
and X to mind. Because A and X are anticipated but neither
is presented, the resulting trace records –A and –X. At test,
A activates those traces. Because A’s similarity to its
inverse is negative and because traces are multiplied by
their activation values in retrieval, the –A and –X traces
are reinverted at retrieval, and the echo retrieves a positive
representation of X. Once again, the result is not a
consequence of encoding or retrieval alone. Rather,
recovery from overshadowing emerges from interactions
between the two.

Second-order retrospective revaluation Denniston,
Savastano, and Miller (2001) reported an experiment on
retrospective revaluation that included three training phases
followed by a test. In phase 1 of training, subjects were
exposed to two cues, A and B, followed by an outcome, X.
In phase 2 of training, subjects were exposed to two cues, B
and C, followed by X. In phase 3, A was extinguished (i.e.,

Table 14 Simulation of recovery from overexpectation

Training L

Condition Phase 1 Phase 2 Phase 3 Test .33 .67 1.00

Recovery 50 A ➔ X / 50 B ➔ X 50 AB ➔ X 200 A X|B .75 (.01) .78 (.01) .86 (.01)

Control (1) 50 A ➔ X / 50 B ➔ X 50 AB ➔ X 200C X|B .73 (.01) .75 (.01) .80 (.03)

Control (2) 50 A ➔ X / 50 B ➔ X 50 AB ➔ X X|B .60 (.01) .68 (.02) .80 (.02)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.

Table 15 Simulation of recovery from overshadowing

Training L

Condition Phase 1 Phase 2 Test .33 .67 1.00

Recovery 50 AB ➔ X 200 B X|A .69 (.02) .79 (.01) .93 (.01)

Control 50 AB ➔ X X|A .61 (.02) .73 (.02) .86 (.01)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses. In the simulations, αA=0.7.
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presented alone) or it was not presented (i.e., a control
condition). The full design is shown in Table 16. Subjects
responded less strongly to C when A was extinguished in
phase 3 of the training procedure. The result illustrates
second-order retrospective revaluation. Training with A in
phase 3 of the procedure influenced responding to C.
However, A and C were never paired in the training phase.
Rather, A had a second-order connection to C, through their
shared partner, B. The result shows that retrospective
revaluation can influence learning of both directly and
indirectly previously paired cues. The result places con-
straints on an account of retrospective revaluation.

We applied Minerva-AL to Denniston et al.’s (2001)
design. As is shown in Table 16, Minerva-AL anticipates
second-order retrospective revaluation: X|C was smaller
after A was extinguished.

Summary Retrospective revaluation denotes learning of
associatively activated but unpresented cues. Minerva-AL’s
explanation of retrospective revaluation as de novo learning
via within-compound associations is consistent with a
number of other models (e.g., Dickinson & Burke, 1996;
Ghirlanda, 2005; Miller & Matzel, 1988; Van Hamme &
Wasserman, 1994; Witnauer & Miller, 2011). However,
Minerva-AL offers a unique computational description of
how that process unfolds by a combination of discrepancy
encoding and trace inversion at retrieval.

General discussion

Minerva-AL describes the memorial processes involved in
representing, storing, and retrieving instances of experience
from memory. Each experience is stored in memory as a
unique trace (i.e., an instance). Encoding emphasizes
unexpected over expected features (i.e., discrepancy encod-
ing). When a probe is presented to memory, traces similar to
it are activated, and a sum of the activated traces is
retrieved. Because a probe retrieves whole traces, it
retrieves the events it has co-occurred with in the past: this
is how the model accomplishes associative learning.

Minerva-AL gives a relatively unique description of
associative learning (for a related approach, see Blough,
1998). Most theories of associative learning represent the

associations between stimulus units directly (i.e., as
connection weights). In contrast, Minerva-AL models
association as a corollary of retrieval: A probe that is
presented to memory retrieves an aggregate of experience
that represents its expectations for what will follow. Thus,
expectation is an emergent property of retrieval. Critically,
the theory does not store associative knowledge, beyond the
conjunction of events from individual trials of a learning
experiment. Of course, there are limits on this statement.
We presume, as does Hintzman (1986), that a learner might
formulate and then store an expectation to be retrieved and
used later. We note that Thomas et al. (2008) have
developed a description of relevant mechanisms for
accomplishing deliberate search through memory within
the framework of Minerva 2. Adding their hypothesis
generation and memory search algorithm to Minerva-AL
could model the coordination between feature- and rule-
based learning documented in work on associative learning
in humans (Shanks & Darby, 1998; Tangen & Allan, 2004).

An instance-based account of learning and memory has
several strengths. First, differently from the summative
learning theories, an instance-based model acknowledges
evidence that nonhuman animals have good long-term
memory for the specific (Fagot & Cook, 2006; Vaughan
& Greene, 1984). Second, Minerva-AL distinguishes
encoding from retrieval, a point that has received rare
consideration in formal learning theory (see, however,
Bouton, 1993; Miller, 2006; Miller & Matzel, 1988; Stout
& Miller, 2007). For example, consider how Minerva-AL
explains backward blocking. At test, traces in memory
contain representations of positive X. Yet, at retrieval, B
retrieves negative X through a process of trace inversion.
The example demonstrates that Minerva-AL’s knowledge is
not in memory but, rather, its expectations emerge from
memory during retrieval. Third, examining an instance-
based approach to learning and memory speaks to the
present controversy over episodic memory in nonhuman
animals (Babb & Crystal, 2006; Clayton & Dickinson,
1998).To clarify our contribution to this discussion, our
instance-based model is not an account of episodic memory,
it is an account of learning that assumes memory for the
events of individual learning trials. The distinction is a
critical one. By Tulving’s (2002) terms, episodic memory

Table 16 Simulation of second order retrospective revaluation

Training L

Condition Phase 1 Phase 2 Phase 3 Test .33 .67 1.0

Second-order 50 AB ➔ X 50 BC ➔ X 50 A X|C .36 (.02) .08 (.05) -.21 (.10)

Control 50 AB ➔ X 50 BC ➔ X X|C .46 (.02) .38 (.02) .36 (.02)

Note. Means and standard errors computed over 25 independent replications. Standard errors are in parentheses.
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involves autonoetic consciousness—mental reenactment
and reexperiencing of episodes in one’s personal past.
Minerva-AL has no such capability, even though memory
consists of “episodes.” It remains a point for debate
whether instance-based representation can accommodate
examples of episodic-like memory in nonhumans. Fourth,
many researchers have argued in favor of separate systems
for learning and memory—one system that handles asso-
ciative learning and another that handles memory for the
specific (Knowlton, Ramus, & Squire, 1992). Minerva-AL
contradicts this position and argues, instead, that learning
emerges from parallel retrieval of the specific, a difference
that has implications for understanding the structure of
memory and the epistemic status of learning (see McClelland
& Rumelhart, 1986). Finally, models of associative learning
and models of human memory rely on different formalisms.
Our reanalysis of associative learning using a model of
human memory can serve as a conceptual bridge to help
human memory theorists consider the implications of
associative learning in their own work and to help learning
theorists reconsider their own ideas through the tools of
human memory research. Admittedly, there are critical
differences in human memory and animal learning, but there
is also a great deal of overlap to inform both fields of study
(see Bouton & Moody, 2004).

Despite Minerva-AL’s many successes, the model com-
mits notable mispredictions. For example, the model
incorrectly predicts that after B is established as a
conditioned inhibitor of X, unreinforced training with B
ought to extinguish the inhibition. Minerva-AL has trouble
with peak shift (see McLaren, Bennett, Guttman-Nahir,
Kim, & Mackintosh, 1995). Minerva-AL predicts that some
examples of retrospective revaluation (e.g., backward
blocking) ought to be strong and reliable when, in fact,
retrospective revaluation is experimentally elusive (see
Blaisdell et al., 1999; Dopson, Pearce, & Haselgrove,
2009; Holland, 1999). Minerva-AL fails to acknowledge
mediated conditioning due to its explanation for retrospec-
tive revaluation—a confusion recognized elsewhere (see
Dwyer, 1999; Graham, Jie, Chan, McLaren, & Wills,
2011). Augmented versions of Minerva-AL can produce
second-order conditioning and relative cue validity, but
those capabilities require modifications. Minerva-AL
does not handle learned inattention and highlighting
(Kruschke, 2005; Kruschke & Blair, 2000). Minerva-AL
does not distinguish cue-timing results such as the
distinction between delay and trace conditioning (see
Vogel, Castro, & Saavedra, 2004, for a discussion on the
differences between trial-level and real-time models).
Finally, even though Minerva 2 and Minerva-AL share
principles, the two models differ enough that Minerva 2
does not predict associative learning, and, in some cases,
Minerva-AL contradicts the predictions of its parent

theory. We intend to explore all of these problems in
future work.

By any rational analysis, learning and memory are
indivisible (Ebbinghaus, 1885/1964; Pavlov, 1927). Yet,
following the cognitive revolution, theories of learning
focused on associative processes, whereas theories of
memory focused on information processing. Despite the
historical divergence, research in the two traditions has
produced provocative consistencies. Humans and other
animals exhibit blocking and overshadowing (e.g., Chapman
& Robbins, 1990; Dickinson & Shanks, 1985; Kruschke &
Blair, 2000), learn complex categories (Herrnstein, Loveland,
& Cable, 1976; Mackintosh, 1995; Pearce, 1988), exhibit
sensitivity to information content (Froehlich, Herbranson,
Loper, Wood & Shimp 2004; Herbranson & Shimp, 2008;
Hyman, 1953), show context-dependent learning, and appear
to reason about abstract relations among cues (Beckers,
Miller, De Houwer, & Urushihara, 2006).

Authorities who have recognized the consistencies have
worked to describe learning principles that are general and
cut across species. To name a few, Pearce (1988) developed
an explanation for prototype learning in pigeons by
appealing to a model of human memory. Blough (1998)
developed an instance-based model of discrimination in
pigeons, using signal detection theory. Gluck and Bower
(1988) adapted the Rescorla–Wagner model (Rescorla &
Wagner, 1972) to explain category learning in humans.
Kruschke (2001) developed connectionist architectures to
explain associative learning in humans. Provided a thought-
ful review on the associative and cognitive explanations of
contingency learning. Allan and her colleagues used the
Rescorla–Wagner model to explain enduring color-
contingent aftereffects in perception (e.g., Allan & Siegel,
1991; Siegel, Allan, & Eissenberg, 1992).

The work here follows this tradition. The Minerva 2
model was invented to explain human memory. We have
shown that a minor variant of the theory also happens to
explain associative learning, at least when the process of
discrepancy encoding is added. We are comforted that a
theory of memory can speak to the problem of learning.
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