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Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems:
an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system
that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In
classification, subjects sort unstudied grammatical exemplars from lures, whereas in recognition, they
sort studied grammatical exemplars from lures. Hence, global similarity is necessarily greater in
recognition than in classification. Moreover, a grammatical exemplar’s similarity to studied exemplars is
a nonlinear function of the integrity of the data in memory. Assuming that data integrity is better for
control subjects than for subjects with amnesia, the nonlinear relation combined with the advantage for
recognition over classification predicts the dissociation of recognition and classification. To illustrate the
dissociation of recognition and classification in healthy undergraduates, we manipulated study time to
vary the integrity of the data in memory and brought the dissociation under experimental control. We
argue that the dissociation reflects a general cost in memory rather than a selective impairment of separate
procedural and episodic systems.
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Memory is often conceived as a set of interconnected parts with
separate explicit and implicit systems for learning (Schacter &
Tulving, 1994). The dual-systems position derives, in part, from
performance by people with amnesia who cannot recognize stud-
ied items but who show evidence of having learned them when
tested in a classification or judgment-of-grammaticality (JOG)
task. The dual-systems idea claims that (a) recognition reflects an
explicit learning system, called episodic memory; (b) JOG reflects
an implicit system, called procedural memory; and (c) only the
episodic system is damaged in amnesia (i.e., the procedural system
is spared; see Knowlton & Squire, 1993; Squire, 1994).

Although the recognition–classification dissociation is widely
taken to imply two systems, the form of evidence—dissociation—
cannot force the conclusion (Dunn & Kirsner, 1988, 2003; Van Orden
& Kloos, 2003; Van Orden, Pennington, & Stone, 2001). It has been
known for two decades that a single-system account can accommo-

date the basic facts of amnesia (McClelland & Rumelhart, 1986), and,
more recently, single-system accounts of learning have mimicked the
recognition–classification dissociation (e.g., Kinder & Shanks, 2001,
2003; Malmberg, Zeelenberg, & Shiffrin, 2004; Zaki & Nosofsky,
2001; see Cleeremans & Dienes, 2008; Pothos, 2007).

Although single-system accounts can be parameterized to mimic
the dissociation, they are often special-purpose models crafted to
show that a single-system account can accommodate the dissoci-
ation. Kinder and Shanks (2001), for example, simulated the
dissociation with a simple recurrent network (SRN), an associative
network designed to learn serial-order information (see also
Botvinick & Plaut, 2006). Reber (2002) objected to their approach
because such models require extensive training and, therefore, do
not map onto standard procedures for recognition memory. Hence,
to support the single-system position, we need a single-system
model that is consistent with standard procedures and that explains
the dissociation in terms of established principles of storage in and
retrieval from memory.

Our analysis of the source of the recognition–classification
dissociation has roots in Brooks’ (1978; see also Vokey & Brooks,
1992) account of performance in JOG. In his analysis, JOG is
based on the similarity of a probe to the studied items. Similarity
ideas derived from Brooks’ analysis have been formalized in
models of both classification (e.g., Nosofsky & Zaki, 1998; Pothos
& Bailey, 2000) and retrieval (e.g., Jamieson & Mewhort, 2009a,
2009b, 2010).

The classification approach is based on Nosofsky’s (1988) gen-
eralized context model. To apply the model, one (a) estimates
interexemplar similarity, (b) uses the similarity estimates to con-
struct a psychological space (Shepard, 1987), and (c) applies the
model’s classification algorithm to derive decisions. Nosofsky and
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Zaki (1998) argued that the recognition–classification dissociation
is explained in terms of the confusability of items in memory,
rather than in terms of selective impairment to one of two memory
systems. To test the idea, Nosofsky and Zaki used perceptual dot
patterns to assess the performance of healthy subjects in both
classification and recognition. Following Graf, Mandler, and
Haden (1982), they delayed the test to simulate amnesic symptoms
in healthy undergraduates. Performance in both recognition and
classification decreased with increased time between study and
test, but the reduction was larger for recognition than classifica-
tion. Nosofsky and Zaki concluded that “a single-system
exemplar-memory model that allows for a parameter change to
represent the differential sensitivities of normal and amnesic indi-
viduals is capable of reproducing the classification and recognition
probabilities that Knowlton and Squire . . . observed” (p. 252). It is
unclear how time affects distinctiveness of items in memory, and
time has long been notorious as an agent of loss from memory
(e.g., McGeoch, 1932).

Jamieson and Mewhort’s (2009a, 2010) retrieval approach is
based on Minerva 2 (Hintzman, 1986, 1988), a standard account of
recognition memory. They represented the symbols of an artificial
grammar with vectors of random elements. To represent studied
exemplars, Jamieson and Mewhort concatenated the symbol vec-
tors to assemble exemplar vectors.1 In their account, JOG is not
based on knowledge of the grammar. Instead, both recognition and
JOG are based on global similarity, an index of the probe’s
similarity to the studied exemplars.2

The retrieval and classification approaches differ in both when
and how similarity is calculated. The generalized context model
assumes that estimates of interexemplar similarity are available
and that the similarity structure of the exemplars is static. The
retrieval approach starts with a representation of the exemplars
(i.e., concatenated symbol vectors) and computes similarity on the
fly in response to each probe. As a result, the similarity structure
is dynamic; it reflects the state of memory when the probe is
applied.

In the present article, we develop the retrieval approach to show
how it handles the dissociation of recognition and classification.
Our aim is to bring the dissociation under experimental control in
healthy subjects to develop evidence that it reflects the integrity of
data in memory rather than selective impairment of a separate
episodic memory system.

Retrieval When Data in Memory Are Compromised

Knowlton, Ramus, and Squire (1992) provided a now-classic
demonstration of the recognition–classification dissociation in am-
nesia. In their study, subjects with amnesia and matched control
subjects studied 23 letter strings; each string conformed to the
rules of a finite-state grammar (see Figure 1). After they studied,
the subjects had their knowledge assessed with a JOG classifica-
tion test and a recognition test. The JOG test required the subjects
to discriminate unstudied grammatical probes from unstudied un-
grammatical probes. The recognition task required them to dis-
criminate studied grammatical probes from unstudied ungrammat-
ical probes.

Knowlton et al.’s (1992) results are reproduced in the top panel
of Figure 2. Performance by the subjects with amnesia and the
control subjects was not reliably different in the classification test,

but the control subjects were much better in the recognition test.
Knowlton et al. argued that classification is supported by an
implicit procedural-learning system, intact in both the control
subjects and the subjects with amnesia, whereas recognition is
supported by an explicit episodic-learning system, intact only in
the control subjects. Accordingly, selective impairment in amnesia
produced a selective deficit to performance in recognition.

Knowlton et al.’s (1992) procedure may seem to provide a fair
comparison, but from the perspective of global-similarity theory, it
is biased in favor of recognition. The bias occurs because JOG
required subjects to distinguish unstudied grammatical targets
from unstudied ungrammatical lures, whereas recognition required
subjects to distinguish studied grammatical targets from unstudied
lures. Because the targets were studied in the recognition task but
unstudied in the classification task, targets’ global similarity in
recognition must be greater than it is in classification (see Higham
& Vokey, 1994; see Knowlton & Squire, 1994, for a rebuttal).

To calculate the effect of changes in data integrity on recogni-
tion and classification, we simulated Knowlton et al.’s (1992) two
tasks. Details of the simulation model can be found in Jamieson
and Mewhort (2009a, 2010). Briefly, we represented each letter

1 If it was important to capture both the intersymbol similarity as well as
the structure of the multisymbol exemplars, the symbol vectors could be
adjusted. For example, if an exemplar involved the symbols CESO and
subjects were to encode it phonetically, the vectors for C and E could be
made more similar to each another than to the vectors for S and O. Of
course, if the subjects used a visual code, one might prefer to make C and
O similar rather than C and E. Similarly, depending on what subjects
encode, vectors may represent conjunctions of letters to represent bigram
information (cf. Kinder, 2000).

2 Decision in Minerva 2 assumes that subjects accept a probe if it is
sufficiently familiar and reject it otherwise. Recent evidence suggests,
however, that subjects use contradiction to reject probes. The two possi-
bilities are correlated, but recent experiments have begun to tease them
apart (e.g., Johns & Mewhort, 2002, 2003, 2009; Mewhort & Johns, 2000,
2005; Rotello, Macmillan, & Van Tassel, 2000).
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Figure 1. An artificial grammar. A grammatical stimulus is generated by
starting at the leftmost node marked S1 and following the paths (indicated
by arrows) until reaching one of the “out paths” from nodes S3, S4, or S5.
The grammar is redrawn from “Intact Artificial Grammar Learning in
Amnesia: Dissociation of Classification Learning and Explicit Memory for
Specific Instances,” by B. J. Knowlton, S. J. Ramus, and L. R. Squire,
1992, Psychological Science, 3, p. 175. Copyright 1992 by the American
Psychological Society. Adapted with permission of SAGE Publications.
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used in the grammar with a unique vector of 20 random binary
values [!1, "1] and constructed each exemplar by concatenating
the vectors that correspond to its constituent letters; a string of six
letters, for example, was coded by the concatenated letter vectors,
yielding a vector of dimensionality 120.

Training was implemented by copying each of the training
strings to a memory matrix, one row per string. Data integrity was
manipulated by randomly replacing a proportion (1 ! L) of ele-
ments in memory with 0s. As L increased, data integrity improved.

All retrieval is cued in the model. When a cue is presented, it
activates all memory traces in proportion to their similarity to the
cue. The activation from all traces is aggregated into a composite
trace (the echo). The echo’s intensity, I, is a function of the probe’s
similarity to all items in memory:

I ! !
i#1

m "!j#1

n

Pj " Mij

Nr

#
3

,

where Pj is the value of the jth feature in the probe, Mij is the value
of jth feature of the ith row in memory, m is the number of traces
in memory, n is the number of features in a trace, and Nr is the
number of features in the probe and memory traces that are both
nonzero. Echo intensity quantifies a probe’s global similarity to its
training set. In recognition, it serves as evidence prompting an old
response. In a JOG task, it is evidence prompting a grammatical
response.

Classification (JOG) required subjects to distinguish unstudied
grammatical targets from unstudied ungrammatical lures, whereas
recognition required them to distinguish studied grammatical tar-
gets from unstudied lures. Accordingly, we ran separate simula-
tions for each task and estimated global similarity across a full
range of data integrity. The top panel in Figure 3 shows global
similarity for targets and lures as a function of encoding quality (L)
and task.

As shown in Figure 3, the lure conditions for both tasks sit on
top of each other. Global similarity for the studied grammatical
strings (targets in the recognition test) was systematically greater
than for the unstudied grammatical strings (targets in the classifi-
cation test).3 Finally, the advantage for the studied strings over the
unstudied strings was increasingly exaggerated as data quality
improved.

The bottom panel in Figure 3 recasts the simulation data to show
the difference in global similarity for targets and lures in the
classification (closed symbols) and recognition tasks (open sym-
bols). The difference measure indexes how well global similarity
discriminates targets from lures in each task. As shown, discrim-
ination of targets from lures was systematically better in recogni-
tion than in classification, and the advantage for recognition in-
creased exponentially with data integrity. When data integrity was
poor (e.g., L $ .5), the model predicted discrimination of targets
and lures to be no better in classification than recognition. Dis-
crimination improved as data integrity improved, but the improve-
ment was faster in recognition than in classification.

With the simulation in mind, recall that recognition by Knowl-
ton et al.’s (1992) control subjects was 72%, indicating that even
with ample study time, control subjects’ memory for the studied
items was less than perfect; presumably, data integrity for patients
with amnesia is even lower than data integrity for the control
subjects. Suppose, then, that data integrity for patients with am-
nesia is captured when L # .4, whereas data integrity for normal
subjects is captured when L $ .6. As shown in Figure 3, with data
integrity as poor as L # .4—the situation that we associate with
the amnesic group—global similarity predicts a very small advan-
tage for recognition over classification. With data integrity better
then L # .6—the situation that we associate with Knowlton et al.’s
control subjects—global similarity predicts a strong advantage for
recognition over classification. Thus, if data integrity for Knowl-
ton et al.’s control subjects was better than data integrity for their

3 In an article addressing JOG for individual exemplars, we analyzed
tasks that tested both studied and unstudied grammatical strings (e.g.,
Dienes, 1992). Consistent with Figure 3, people rated studied grammatical
test items as more grammatical than unstudied grammatical test items (see
Jamieson & Mewhort, 2010, Table 8). The difference confirms the model’s
prediction: Rated grammaticality is larger for studied grammatical items
than for unstudied ones.

Figure 2. Accuracy as a function of task, subject type, and presentation
conditions. The top panel presents data from Knowlton, Ramus, and
Squire’s (1992) study and shows performance in classification and recog-
nition for both subjects with amnesia and control subjects. The bottom
panel shows performance by healthy undergraduates as a function of study
time per training exemplar. Whiskers indicate standard errors. Data in the
top panel are redrawn from Table 3 in “Intact Artificial Grammar Learning
in Amnesia: Dissociation of Classification Learning and Explicit Memory
for Specific Instances,” by B. J. Knowlton, S. J. Ramus, and L. R. Squire,
1992, Psychological Science, 3, p. 175. Copyright 1992 by the American
Psychological Society. Adapted with permission of SAGE Publications.
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patients with amnesia, the global-similarity idea anticipates the
dissociation.

Both the dual systems and retrieval positions acknowledge that
a deficit follows from amnesia. At issue is what the deficit reveals
about the architecture of memory. The dual-systems position pos-
tulates that one of two systems is damaged in amnesia. The
retrieval view postulates a data deficit in amnesia without postu-
lating a second learning system. From the dual-systems perspec-
tive, the dissociation of recognition and classification in amnesia
reflects selective impairment of one system. From the retrieval
perspective, the dissociation is an artifact reflecting a bias favoring
recognition combined with a nonlinear function relating global
similarity and data integrity. Fortunately, the idea that the disso-
ciation reflects an artifact admits to a direct empirical test: Ma-
nipulating data integrity should induce the dissociation in normal
subjects.

Bringing the Dissociation Under Experimental Control

To test the idea that the recognition–classification dissociation
reflects a bias for recognition over classification that interacts with
the quality of the data in memory, we conducted a conceptual
replication of Knowlton et al. (1992) using healthy undergradu-
ates. During training, subjects memorized 23 training strings taken

from the target experiment. Each string was presented for 0 ms,
100 ms, or 6,000 ms. The 0-ms condition was intended to establish
baseline performance in classification and recognition, indepen-
dent of viewing the training items. The 100-ms condition was
chosen to produce a severe data deficit of the sort associated with
amnesia; the 6,000-ms condition was chosen to allow for the better
data integrity that is associated with control subjects. After train-
ing, the subjects completed either a recognition test for the studied
grammatical items or a classification test in which they discrimi-
nated novel grammatical items from novel ungrammatical items,
the same tests that Knowlton et al. used.

Method

Participants. Ninety undergraduates from the University of
Manitoba subject pool participated in the study. They were as-
signed in equal numbers to the six experimental conditions defined
by the factorial combination of encoding time (0 ms, 100 ms, and
6,000 ms) and test type (classification vs. recognition). All re-
ported normal or corrected-to-normal vision.

Stimuli. The stimuli were derived from Knowlton et al.’s
(1992) Grammar A (see Figure 1), the same grammar that we used
for the simulation. There were 46 grammatical strings and 46
ungrammatical strings. The grammatical strings make up the entire
set of strings of six characters or fewer that can be produced from
the grammar. Because Knowlton et al. did not list their ungram-
matical stimuli, we generated 46 ungrammatical strings matched
for length against the grammatical ones. To generate a string, we
sampled one of the four consonants used in the grammatical
items—J, T, X, and V—randomly to each serial position in the
string. If the resulting string was ungrammatical, it was used;
otherwise, it was discarded and replaced.

For each subject, the 46 grammatical strings were divided ran-
domly into two sets. In recognition, the 23 grammatical strings
presented in training also served as the studied grammatical tar-
gets. In classification, the 23 grammatical strings that were not
presented in training served as the unstudied grammatical targets.
For both tests, 23 of the 46 ungrammatical strings were selected
randomly to serve as the unstudied ungrammatical lures; the 23
ungrammatical items were sampled randomly for each subject.

Procedure. The experiment was administrated on computers.
Participants were tested in groups of four to seven; each subject
used a different computer.

The subjects were told that they would be shown strings of
letters and that they should try to remember the strings. Partici-
pants in the 0-ms condition were told the strings would be pre-
sented subliminally and that they should keep their eyes on the
screen over the training phase.

The subject initiated the training phase of the experiment by
clicking on the word Start displayed at the center of the computer’s
screen. When the trial started, the screen was cleared for 750 ms;
immediately thereafter, a training string was presented at the center
of the screen. The training string remained on the screen for 0, 100,
or 6,000 ms, depending on the condition to which the subject had
been assigned. Next, the screen was cleared for 750 ms, and (in the
100- and 6,000-ms conditions) the next string was displayed. The
training cycle repeated until all of the training strings had been
presented.

Figure 3. Simulation of Knowlton, Ramus, and Squire’s (1992) recog-
nition and classification tasks. The top panel presents global similarity for
the targets and lures in both the tasks as a function of data integrity. The
bottom panel shows the discrimination computed by subtracting lure from
target values for both tasks as a function of data integrity.
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After training, the subjects in the recognition test were asked to
distinguish the studied strings from unstudied lures. In classifica-
tion, the subjects were first informed that the studied strings were
constructed using rules and were asked to distinguish novel strings
that conformed to the rules from novel strings that violated the
rules. Participants were invited to ask for clarification if the in-
structions were unclear; otherwise, they were instructed to click on
a button labeled Begin to initiate the test procedure.

At the start of the test, the screen was cleared for 1 s, after which
the first test string was displayed at the center of the screen. Two
buttons appeared below the string, one on the left and another on
the right. For the recognition condition, the buttons were labeled
Old and New. For the classification condition, the buttons were
labeled Correct and Incorrect (the same labels Knowlton et al.,
1992, used). The subjects used their computer’s mouse to click on
the appropriate button. After the subject’s response had been
recorded, the screen was cleared; 1 s later, the next test string was
displayed. The test cycle continued until the subject had responded
to each of the test strings.

After the test, a text editor was provided on the computer’s
screen, and, prompted by a message that the training items had
been constructed using the rules of an artificial grammar, the
subjects were invited to describe the rules.

Results and Discussion

Mean percentage correct classification and recognition scores
are presented in the bottom panel of Figure 2. First, classification
performance was equivalent in the 100-ms and 6,000-ms condi-
tions, t(28) # 1.078, p #.291, d # 0.394, replicating the null
difference reported for Knowlton et al.’s (1992) patient and control
groups. Second, recognition performance was reliably worse in the
100-ms training group as compared with the 6,000-ms training
group, t(28) # 3.234, p # .003, d # 1.181, replicating the deficit
of Knowlton et al.’s patients with amnesia relative to their control
subjects. Third, performance was better in the 100-ms over the
0-ms conditions for both recognition, t(28) # 4.091, p # .001, d #
1.443, and classification, t(28) # 3.07, p # .005, d # 1.119,
confirming that performance in the 100-ms conditions reflected an
advantage based on memory of the training items rather than
learning over the course of the test phase. Fourth, performance was
above chance (M # 50%) in all but the 0-ms control conditions,
matching the better than chance performance by subjects with
amnesia in Knowlton et al.’s study (% # .05). Finally, comparison
of performance in the 100- and 6,000-ms conditions in our exper-
iment against that of Knowlton et al.’s subjects with amnesia and
control subjects, respectively, shows a close match to both the
means and standard errors.

The pattern of results is remarkably consistent with Knowlton et
al.’s (1992) data. There is, of course, a key difference: We used
study time, a proxy for data integrity, as the dissociating factor.
From our perspective, both classification and recognition reflect an
incomplete memory of the training exemplars. The dissociation of
recognition and classification in both studies reflects the nonlinear
function of data integrity and global similarity.

The experiment tested the idea that the dissociation of recogni-
tion and classification reflects a difference in data quality rather
than selective impairment to a dedicated learning system. To
confirm the data quality idea, we replicated the dissociation by

manipulating study time in a sample of healthy undergraduates.
Our evidence not only confirms that the dissociation can be ex-
plained without assuming a specialized procedural learning system
but also brings it under experimental control.

General Discussion

We are not alone in arguing against dual-system accounts of the
recognition–classification dissociation. However, the present work
extends the argument in three ways. First, we explain the dissoci-
ation in terms of a bias in the design of the dissociation experiment
combined with nonlinear growth in similarity as data integrity
improves (Kinder & Shanks, 2001). Second, because our model is
based on an established account of retrieval, we have described
retrieval in amnesic subjects with the same principles as retrieval
in normal subjects (see Clark & Gronlund, 1996). For the same
reason, our approach escapes the criticism that Reber (2002)
leveled against Kinder and Shanks’s (2001) network account.
Finally, we have encapsulated the argument by producing the
dissociation in healthy subjects. The demonstration shows, at a
minimum, that the dissociation does not imply two systems. In
light of the present data, to argue for two systems, one needs a
form of evidence that is not based on the dissociation between
recognition and classification.

Our manipulation of study time per exemplar was designed to
compromise the integrity of our subjects’ memory for the training
strings. We are agnostic about details of the corresponding data
loss in amnesia: It may reflect an encoding deficit or it may reflect
rapid loss after initial encoding (see Mayes, Downes, Shoqeirat,
Hall, & Sagar, 1993). Likewise, our account is agnostic about the
order in which aspects of a verbal stimulus might be encoded (see
Criss & Malmberg, 2008). We note, however, that the sequences
of letters in both grammatical and ungrammatical exemplars con-
flict with English usage. Hence, encoding is unlikely to include
what Criss and Malmberg (2008) described as late-stage or seman-
tic encoding.

Our retrieval-based approach contrasts with the SRN serial-
learning account developed by Kinder and Shanks (2001). The
SRN learns regularities in training items over multiple presenta-
tions at study and bases decisions on that information at test (e.g.,
Cleeremans, Servan-Schreiber, & McClelland, 1989). In contrast,
Minerva 2 stores once-presented events: The structure in those
events emerges retrospectively and on the fly during retrieval. In
Redington and Chater’s (2002) terminology, the SRN is an eager
and prospective account whereas ours is a lazy and retrospective
one.

Despite differences, Minerva 2 and the SRN share a prediction.
If both control subjects and subjects with amnesia were tested
using studied grammatical targets and unstudied ungrammatical
lures under both recognition and classification instructions, per-
formance of the subjects with amnesia should fall below that of the
control subjects, and the dissociation of recognition and classifi-
cation should disappear. At least for healthy undergraduates,
Kinder and Shanks (2001, Experiment 1) showed that judgment of
grammaticality for studied grammatical, unstudied grammatical,
and unstudied ungrammatical test items did not differ under rec-
ognition and classification instructions. If performance by subjects
with amnesia and control subjects is mediated by different sys-
tems, however, there is no reason to expect the dissociation to
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change when studied items are used in both recognition and
classification. Control subjects should still benefit from the avail-
ability of both systems, and subjects with amnesia should continue
to benefit from the implicit system.

Finally, to reduce performance of control subjects to the level of
subjects with amnesia, we used a tachistoscopic study time (100
ms). The study time allowed material to be encoded—performance
was better than the 0-ms control—but data integrity was poor.
Nevertheless, even under such extreme conditions, our subjects
performed above chance, a feat that is remarkable itself and that
underscores an important insight that Hintzman (1986, 1988) built
into Minerva 2: Even when the data in memory are sparse, Min-
erva’s retrieval algorithm supports above-chance performance in
both recognition and classification.
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