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People remember words that they read aloud better than words that they read silently, a result known as
the production effect. The standing explanation for the production effect is that producing a word renders
it distinctive in memory and, thus, memorable at test. By 1 key account, distinctiveness is defined in
terms of sensory feedback. We formalize the sensory-feedback account using MINERVA 2, a standard
model of memory. The model accommodates the basic result in recognition as well as the fact that the
mixed-list production effect is larger than its pure-list counterpart, that the production effect is robust to
forgetting, and that the production and generation effects have additive influences on performance. A
final simulation addresses the strength-based account and suggests that it will be more difficult to
distinguish a strength-based versus distinctiveness-based explanation than is typically thought. We
conclude that the production effect is consistent with existing theory and discuss our analysis in relation
to Alan Newell’s (1973) classic criticism of psychology and call for an analysis of psychological
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principles instead of laboratory phenomena.
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Psychology often uses a divide-and-conquer strategy to under-
stand how people learn and remember. For example, the standard
multiple systems view assumes different systems for explicit and
implicit memory with a further subdivision into episodic, seman-
tic, procedural, priming, classical conditioning, and nonassociative
learning (Squire, 1994, 2004). Although the strategy offers the
methodological convenience of allowing researchers to address
one function of memory at a time, the divide-and-conquer strategy
risks leaving us with a fractured perspective: a view of the trees for
lack of the forest.

An alternative view is that memory is a single system capable
of producing complex and even perplexing patterns when faced
with different test scenarios and materials. For example, Jamieson and
Mewhort (2009a, 2009b, 2010, 2011; see also Jamieson, Holmes, &
Mewhort, 2010), Higham, Vokey, and Pritchard (2000), Kinder and
Shanks (2001, 2003), Nosofsky and Zaki (1998), and Benjamin
(2010) have all argued that implicit and explicit learning can be
understood using a single set of principles and mechanisms to
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handle phenomena traditionally distinguished as being implicit
versus explicit. The number of memory systems needed is a
fundamental issue. If we need to develop a different account for
each phenomenon, scientific psychology is a futile discipline. Of
course, we are not the first to note the problem.

Surprenant and Neath (2009) recently called for a critical reap-
praisal of theories of memory. To frame their argument, they asked
“If the goal of science is to identify invariants and regularities
within a particular domain (Russell, 1931; Simon, 1990), one
might ask, what are the laws and principles of human memory?”
(p- 2). They then pointed out that whereas 100 years of psycho-
logical research has produced an ample database of empirical
effects and demonstrations, the field has failed to develop a unified
explanation of those effects and demonstrations. Based on the
failure, they argued that psychology should orient away from
growing the already overwhelming database and focus instead on
developing a coherent theoretical framework that identifies and
articulates key principles and laws of human behavior. But Sur-
prenant and Neath’s criticism follows from a more classic exam-
ple.

In his cri de ceeur titled “You Cannot Play 20 Questions With
Nature and Win,” Newell (1973) pointed out that psychology had
become seduced into playing an empirical game—one that he
likened to playing the parlor game of 20 questions. Researchers
pose a binary question such as, “Is the memorial benefit of pro-
duction due to distinctiveness or strength” and then resolve the
opposition by experimental analysis. Having solved that one bit’s
worth of uncertainty, the true state of nature becomes more certain.
At first blush, this strategy is entirely rational. But, Newell argued
that the strategy does not work and forecasted that in 30 years (i.e.,
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2003), our discipline would amount to a database of experimental
demonstrations without a coherent explanation. In place of the 20
questions approach, Newell proposed that psychology should shift
from its goal of empirical demonstration to refocus its effort on the
goal of developing a coherent and general explanation of behavior.

Newell’s (1973) advice has been largely ignored: Psychology has
continued to play 20 questions with nature. Unfortunately, as Newell
warned, psychology in 2016 has grown its database of demonstrations
but has not tried to develop a unified account of human behavior.
How, then, should we go about developing the kind of unified account
of memory and cognition that Newell envisaged?

Consider the topic of this special issue: the production effect.
People remember words that they have read aloud better than
words that they have not. Although a memorial advantage for
produced over unproduced words has been known for some time
(e.g., Conway & Gathercole, 1987; De Haan, Appels, Aleman, &
Postma, 2000; Dodson & Schacter, 2001; Gathercole & Conway,
1988; Hopkins & Edwards, 1972), it has recently been renamed
and reexamined (e.g., Bodner & Taikh, 2012; Jamieson & Spear,
2014; MacLeod, Gopie, Hourihan, Neary, & Ozubko, 2010).

MacLeod et al. (2010) explained the production effect as a
corollary of distinctiveness, as opposed to strength (see also
Richler, Palmeri, & Gauthier, 2013). According to the distinctive-
ness view, producing a word renders it distinctive in memory;
distinctiveness, in turn, aids remembering at test. Forrin, MacLeod,
and Ozubko (2012) further defined the memorial distinctiveness
gained by production in terms of the additional motoric and
perceptual features that arise from the productive act:

Relative to silent reading, reading a word aloud involves the encoding
of an additional dimension that stands out as distinct—speech. Ac-
cording to the proceduralist framework (Kolers, 1973; Kolers &
Roediger, 1984), the process of vocalizing at study will be retained in
a record of that processing. In an explicit memory test, participants
can then retrieve this distinctive speech information to determine
whether a word was studied. (p. 1046)

In contrast, the strength position argues that producing a word
strengthens it in memory and that strength, in turn, aids remem-
bering at test (see both Bodner & Taikh, 2012, and Bodner, Taikh,
& Fawcett, 2014, for a discussion of strength). In addition to the
strength/distinctiveness opposition, the production effect has also
been examined in opposition to the enactment effect (in which
people remember a written instruction better if they enact it or
imagine enacting it; e.g., Engelkamp, 1995; Engelkamp & Dehn,
2000; Engelkamp, Zimmer, Mohr, & Sellen, 1994; Peterson &
Mulligan, 2010) and the generation effect (in which people re-
member a word better if they generate it than if they read it; e.g.,
Begg, Vinski, Frankovich, & Holgate, 1991; Johns & Swanson,
1988; Slamecka & Graf, 1978).

In the work that follows, we take up Newell’s (1973) challenge
by integrating an explanation of the production effect within a
framework for memory, MINERVA 2, that is already known to
explain a diverse range of phenomena including confidence—
accuracy inversions in recognition (Clark, 1997), false recognition
(Arndt & Hirshman, 1998), speech normalization (Goldinger,
1998), decision-making (Dougherty, Gettys, & Ogden, 1999), im-
plicit learning (Jamieson & Mewhort, 2009a, 2009b), and levels of
processing (Hintzman, 1986), among others. Specifically, we will
provide a formal description of Forrin et al.’s (2012) sensory-

feedback account and, then, evaluate the theory’s ability to accom-
modate data in recognition. Finally, we will use the model to
examine the relation between distinctiveness and strength in the
production effect. Our immediate aim is to develop a formal
account of the production effect; our broader goal is to show that
the production effect fits with established theory and, therefore,
does not require a unique explanation.

MINERVA 2

MINERVA 2 is a multitrace model of memory (see also Kelly,
Mewhort, & West, 2014). According to the model, episodic traces
are stored in memory; repetition produces multiple traces of an
item. Retrieval is cue-driven and parallel such that each trace is
activated in proportion to its similarity to the retrieval cue, and the
information retrieved from memory is a weighted sum of all
activated traces.

Computationally, the model treats memory as an m X n matrix,
M. Each row in memory stores a trace that includes n features.
Each feature is assigned one of three possible values: +1, —1, or
0. Values of + 1 and —1 represent the presence of information on
the corresponding feature; a value of 0 indicates that information
on the corresponding feature is missing or irrelevant. Each nonzero
feature takes a value of + 1 or —1 with equal probability. Traces
include information about different features of a stimulus. For
example, a studied word might be represented in memory by a
vector of n = 30 features.

Encoding an item involves copying each feature in a stimulus
representation to a corresponding feature in memory. Each feature
is copied correctly with probability L; irrelevant or incorrectly
copied features take a value of zero in memory. Thus, when L =
0, no elements are encoded and when L = 1, all elements are
encoded. As L increases, encoding quality improves.

Presenting a probe, p, to memory, M, activates each trace in
memory in parallel and in proportion to its similarity to the probe,
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where, a; is the activation of trace i, p; is the value of feature j in
the probe, M;; is the value of feature j of trace i in memory, and 1,
is the number of features relevant to the comparison (i.e., the
number of features for which either p; or M;; is nonzero). Activa-
tion ranges between —1 and + 1. When the trace and probe are
identical @ = 1, when the trace and probe are orthogonal a = 0,
and when the trace and probe are opposite a = —1.

The activated traces are, then, retrieved into an echo, which has
two key properties: content and intensity. Echo content is a vector,
¢, that represents the sum of information retrieved from memory.
The echo content is obtained by weighting each trace in memory
by its activation and then summing the weighted traces into a
composite,

m
cj=21a[><M[j{forj=1...n}
=

where c; is the jth feature in the echo content, m is the number of
traces in memory, @, is the activation of trace i, and M,; is the
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feature in the ith row and jth column in memory. Echo intensity is
a scalar, f, that indexes the sum of activation elicited by the probe,

f:;ai

where, m is the number of traces in memory and ¢, is the activation
of trace i in memory. Echo intensity is interpreted as an index of
familiarity and is the feature used to model recognition behavior.
If fis greater than a decision criterion, the probe is recognized as
OLD:; else, it is rejected as NEW.

As explained earlier, MINERVA 2 was designed to explain
performance in a number of tasks, one of which was levels of
processing. In a levels-of-processing study, participants study
some words deeply (e.g., judge synonymy) and others shallowly
(e.g., count vowels). A levels-of-processing effect is observed
when participants remember the deeply processed words better
than the shallowly processed words (Craik & Lockhart, 1972). To
explain the result, researchers have argued that deep processing
causes a person to encode higher-order semantic features, in ad-
dition to the lower-order features associated with shallow encod-
ing. It is the additional information encoded that renders a word
distinctive in memory and, thus, easier to remember at test.

Hintzman (1988) implemented the explanation in MINERVA 2
by encoding deeply processed words with more features than
shallowly processed words. The model captured the levels-of-
processing effect, and he concluded that the levels-of-processing
effect is compatible with a multitrace model of memory and
recognition.

Adapting MINERVA 2

We model the production effect in much the same way that
Hintzman (1988) modelled the levels-of-processing result. How-
ever, we have made an additional change to explain how memory
of the production features stored at study are retrieved and used at
test.

First, to acknowledge the influence of production at study, we
will encode produced targets with 25 features (i.e., 20 base features
in Dimensions 1 through 20 of a vector representation plus 5
sensory feedback features in Dimensions 21 through 25). In con-
trast, unproduced targets will be encoded with 20 (i.e., 20 base
features in Dimensions 1 through 20 but no sensory feedback
features in Dimensions 21 through 25). In both cases, Features 26
through 30 will be set to zero. This first change acknowledges the
influence of production on memory for studied words."

Second, we modelled the retrieval and use of production fea-
tures at test by iterative retrieval. Forrin et al. (2012; Fawcett,
Quinlan & Taylor, 2012; MacLeod et al., 2010) argued that when
an item has been vocalized at study, the production is retained in
the record of studying that item. Consequently, “in an explicit
memory test, participants can then retrieve this distinctive speech
information [and use it] to determine whether a word was studied”
(Forrin et al., 2012, p. 1046). The idea implies two steps in
retrieval: retrieval of the fact that a word had been produced and
use of that information to recover specific information about the
target in question.

To implement the iterative retrieval idea, we used MINERVA
2’s iterative retrieval process called deblurring (see Hintzman,
1986, pp. 416—417). In particular, we presented a test word as a

retrieval probe to retrieve an echo. On this initial retrieval, the test
probe contained only the base features (i.e., Dimensions 1 through
20) without production features (i.e., Dimensions 21 through 25).
But, if the word was produced at study, the retrieved echo content,
¢, will include some information about the corresponding produc-
tion features that were stored at study. In the next retrieval (and on
each subsequent retrieval) we used the normalized version of the
echo content, ¢’, to compute another echo, where ¢/ = ¢/max-
(abs(c)).” Thus, echo intensity in the iterative model is computed
as,
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where fis echo intensity, m is the number of traces in memory, n
is the number of features in a trace, nyg is the number of features
relevant to the comparison of the probe and trace (i.e., the number
of features for which either cj’- or M is nonzero), M, is the feature
in the ith row and jth column in memory, and ¢} is the jth feature
in the normalized echo. In all simulations that follow, we report
echo intensity following a third retrieval because, “Three or four
echo-probe conversions are usually sufficient to produce a virtu-
ally perfect copy of one of the category names that were originally
stored” (Hintzman, 1986, p. 416).

In summary, our model offers a formal representation of the
distinctiveness account presented by Forrin et al. (2012). The
formalization adds two mechanisms to the standard model for
recognition: one to acknowledge that production affects memory
of a word and another to accommodate how the production infor-
mation is retrieved and used in recognition. Otherwise, our model
is consistent with the principles developed in MINERVA 2. We
now turn to a test of the model across a number of standard results
in the production effect database.

Simulations

The Mixed-List Production Effect

The production effect is defined as a memorial advantage for
produced over unproduced words. In the standard test, participants
study words, half of which they produce and half of which they do
not. Following study, they are tested for recognition of the studied
targets that they did and did not produce, relative to unstudied foils.

We used the iterative retrieval model to simulate the standard
mixed-list production paradigm (e.g., MacLeod, 2010). For each
simulated subject, we generated 160 random vectors (i.e., 80
targets and 80 foils). Each vector was constructed by assigning one
of two values + 1 or —1 with equal probability to each of the n =
30 dimensions. As explained earlier, Features 1 through 20 corre-
spond to the word’s base semantic features, Features 21 through 25
correspond to production features, and Features 26 through 30
correspond to higher order associative features (to be used later).

! Our decision to use 20 base features and 5 production features was an
arbitrary one. However, we wish to emphasize that our results are not
peculiar to that decision. As long as the number of production features is
smaller than the number of base features, the same results obtain.

2 This is the normalization function suggested and used by Hintzman
(1986, p. 416).
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Next, we stored the 80 targets to memory. Of the 80 targets
stored to memory, half were stored with Features 1 through 25
filled in (i.e., produced targets) and half were stored with only
Features 1 through 20 filled in (i.e., unproduced targets); in both
cases, all other features were assigned a value of zero (i.e., Di-
mensions 26 through 30). Once all items had been stored to
memory, the learning parameter was applied so that every element
in memory was rewritten as a zero with probability 1 — L after
which we computed the echo intensity for each of the 160 test
items (i.e., the 80 targets and 80 foils) using the iterative retrieval
process. Finally, we set a decision criterion equal to the mean echo
intensity and converted all 160 echo intensities to OLD/NEW
decisions accordingly. The decision to use the mean echo intensity
as the criterion solves three problems. First, it makes the criterion
a fixed instead of free parameter of the model. Second, the strategy
can be applied at all levels of encoding quality and is, therefore, a
principled way to fit the decision criterion over simulations. Third,
using the mean ensures that the criterion reflects a consideration of
the range of familiarities over all test items. To offer a clear picture
of the model’s performance, we conducted 250 independent sim-
ulations (i.e., simulated subjects) for each of five different levels of
encoding quality: L = .2, .4, .6, .8, and 1.7

Figure 1 shows the simulation results. The top panel shows the
percentage of OLD responses for the produced targets, the unpro-
duced targets, and the foils. The bottom panel shows the size of the
production effect. Whiskers show one standard deviation above
and below each mean.

There are four key features to note in Figure 1. First, the
model predicts a consistent recognition advantage for produced
over unproduced targets: the production effect. Second, the
model predicts that the size of the mixed-list production effect
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Figure 1. Simulation of the mixed-list production effect as a function of
encoding quality. The top panel shows percent old performance as a
function of L. The bottom panel shows the production advantage as a
function of L.

should increase as a function of encoding quality (see bottom
panel). Third, the model assumes that the false alarm rate for
unstudied foils should decrease as encoding quality increases—a
result that follows in part from our decision rule that specifies rejec-
tion of test items that have an echo intensity less than the mean of all
echo intensities computed in the same simulation.* Fourth, the differ-
ence in standard deviations for produced and unproduced words
changes as a function of L (i.e., as a consequence of an emerging
ceiling effect for the produced words as L approaches 1). We conclude
that our model based on MINERVA 2 anticipates the standard mixed-
list production effect. But does the theory also predict a smaller
corresponding pure-list production effect?

The Pure-List Production Effect

In a pure-list production effect experiment, participants are
tested for recognition of targets, all of which they either did or did
not produce at study. A pure-list production effect is observed if
participants who produced all items at study outperform partici-
pants who produced no items at study. Although the pure-list
production effect is now known to be reliable, it is also known to
be considerably smaller than its mixed-list counterpart (Fawcett,
2013).

To simulate the pure-list protocol, we ran two sets of simula-
tions. In one series of simulations, we encoded all 80 targets with
25 features (i.e., Dimensions 1 through 25 filled in). In a different
series of simulations, we encoded all 80 targets with 20 features
(i.e., Dimensions 1 through 20 filled in). As before, we conducted
250 independent simulations at each of five levels of encoding
quality: L = .2, 4, .6, .8, and 1.

Figure 2 shows the percentage of OLD responses for targets and
foils as a function of encoding quality and production condition.
The top panel shows results for the all-produced simulations and
the middle panel shows results of the all-unproduced study simu-
lations. Whiskers indicate one standard deviation above and below
each mean. The bottom panel shows the size of the pure-list
production effect.

There are three results to notice in Figure 2. First, there is a
recognition advantage for produced over unproduced items: the
pure-list production effect. Second, the size of the pure-list
production effect grows with L. Third, the false-alarm rate
decreases as encoding quality increases. In summary, the model
correctly predicts that a pure-list production effect will be
observed (Fawcett, 2013). More importantly, it also correctly
predicts that the pure-list production effect will be much
smaller than its mixed-list counterpart (compare bottom panels
in Figures 1 and 2). We conclude that MINERVA 2 predicts the
pure-list as well as the mixed-list production effects.

* The simulations were written and conducted using R 3.1.3 (R Development
Core Team, 2010). Contact the first author for a copy of the code.

4 One could misinterpret our simulated results as displaying a mirror
effect, but, that would be a false impression. A mirror effect is defined as
a negatively correlated relation in the hits and false alarms as a function of
the dissociative factor (i.e., production). However, it is impossible to
observe a mirror effect in the production effect because it is impossible to
measure a false alarm rate for a produced foil: If a participant produced a
“foil” at study, the participant actually studied that item.
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Figure 2. Simulation of the pure-list production effect as a function of
encoding quality. The top panel shows percent old performance in the all
produced condition and the middle panel shows percent old performance in
the all unproduced condition. The bottom panel shows the production
advantage as a function of L. There is a small pure-list production effect,
but only at high values of L.

Forgetting

Introducing a delay between study and test weakens but does not
eliminate the mixed-list production effect (e.g., Ozubko, Hourihan,
& MacLeod, 2012, Experiment 1).

We simulated the effect of forgetting by simulating and testing
recognition in a mixed-list design with 80 targets, half of which
were stored with 20 base plus 5 sensory production features (i.e.,
produced targets) and half of which were stored with 20 base
features alone (i.e., unproduced targets). We set L to .9 to bring the
overall level of recognition performance in the simulation roughly
in line with performance in Ozubko et al.’s (2012, Experiment1)
immediate recognition condition. To simulate the delayed test, we
retested recognition after deleting an additional 50% of the infor-
mation in memory between the immediate and delayed simulations
(i.e., a second encoding cycle in which each element reverted to
zero with probability .5). The method is a standard manipulation to
simulate forgetting as a function of time (see Hintzman, 1986).

We conducted 250 independent simulations of each test. Simu-
lation results are presented in Figure 3. Whiskers show one stan-
dard deviation above and below each mean.

As shown, deleting information from memory weakened but did
not eliminate the mixed-list production effect. The simulation
matches the result from Ozubko, Hourihan, & MacLeod’s (2012)
experiment. We conclude that MINERVA 2 accommodates the
influence of delay on the production effect.
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Figure 3. The mixed-list production effect as a function of study-test
delay. Results are consistent with data from Ozubko, Hourihan, and
MacLeod (2012, Experiment 1; see their Table 1, p. 320).

Method of Production

People recognize words that they produce more intensely better
than words that they produce less intensely. For example, people
recognize words that they read aloud better than words that they
whisper. The top panel in Figure 4 shows an example of the result
from Forrin et al. (2012, Experiment 2C). Whiskers show one
standard deviation above and below each mean. See Quinlan and
Taylor (2013), Gathercole and Conway (1988), and Fawcett et al.
(2012) for other examples.

Forrin et al. (2012) explained the benefit of production intensity
in terms of differential sensory feedback:
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Figure 4. 'The mixed-list production effect as a function of study condi-

tion. Empirical data from Forrin et al. (2012, Experiment 2C) are shown in
the top panel. Simulated results are shown in the bottom panel.
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Mouthing, writing, and whispering all involve additional processing
that stands out as distinct—and therefore memorable—relative to
silent reading. Reading aloud, however, benefits from additional pro-
cessing on two distinct dimensions relative to silent reading: both
articulatory and auditory processing. Moreover, the auditory process-
ing is also distinct relative to the other modes of production, with the
exception of whispering. Whispering also entails auditory processing,
although the acoustic signal is weaker than the signal when reading
aloud, due to the lower volume of the response, which may lead to a
weaker record of processing. (p. 1053)

To capture Forrin et al.’s (2012) procedure and reasoning, we
simulated recognition for spoken items with 25 features, whispered
items with 23 features, and unproduced items with 20 features. The
decision to represent whispered items with 23 features is arbitrary
outside of the fact that it captures the idea that whispering provides
more sensory feedback features than silent reading but less feed-
back than reading aloud.

To match the details of Forrin et al.’s (2012) procedure, we
increased the length of the study list from 80 to 90 items so that
memory included 30 spoken targets, 30 whispered targets, and 30
unproduced targets. We conducted 250 independent simulations to
stabilize predictions and set L to .7 to bring the model’s perfor-
mance into the same range as participants’ performance in the
experiment.

Simulated results are shown in the bottom panel in Figure 4 as
a function of the production manipulation; whiskers show one
standard deviation above and below each mean. As shown, the
model correctly anticipates the recognition advantage for spoken
over whispered targets. It also predicts better recognition of pro-
duced over unproduced targets (i.e., spoken and whispered over
read targets). Assuming Forrin et al.’s (2012) theoretical premise
that speaking produces a stronger record of sensory feedback than
whispering, and that the record of sensory feedback can be re-
trieved and used at test, the model anticipates that intensity of
production will influence recognition performance.

Production and Generation

The production effect has a strong similarity to other well-
known encoding effects, such as the generation effect, in which
people remember a target better if they generate it (Begg et al.,
1991; Johns & Swanson, 1988; Slamecka & Graf, 1978). It also
has obvious similarities to the enactment effect in which people
remember a written instruction better if they enact it (Engelkamp,
1995; Engelkamp & Dehn, 2000; Engelkamp et al., 1994; Peterson
& Mulligan, 2010).

Despite the similarities between production and generation,
evidence suggests that the two are not equivalent because people
recognize words that they have generated and produced better than
words that they have generated but not produced. The data in the
top panel of Figure 5 present an example of the result (MacLeod
et al., 2010, Experiment 7). Whiskers show one standard deviation
above and below each mean.

Despite the empirical difference, MacLeod (2010) speculated
that production and generation might benefit recognition for the
same reason: “The production effect and the generation effect
seem more than superficially similar. In each case, something must
be retrieved from memory—either the item itself or something
related to the item” (p. 236). Others have made the same point on
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Figure 5. Recognition for words produced at study versus words
produced-and-generated at study. The top panel shows empirical data from
MacLeod et al. (2010, Experiment 7); the bottom panel shows our corre-
sponding simulation.
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the grounds that researchers have explained the production, gen-
eration, and enactment effects by the same mechanism: distinc-
tiveness.

Following MacLeod’s (2010) speculation, we assumed that pro-
duction and generation both enhance encoding by adding features
to a studied target’s representation in memory. However, produc-
tion adds motoric and perceptual features whereas generation adds
higher-order associative features. To implement the idea, we sim-
ulated recognition of targets encoded with 30 features (i.e., 20 base
features in Dimensions 1 through 20, 5 production features in
Dimensions 21 through 25, and 5 generation features in Dimen-
sions 26 through 30) versus recognition of targets encoded with 25
features (i.e., 20 base features in Dimensions 1 through 20, no
features in Dimensions 21 through 25, and 5 generation features in
Dimensions 26 through 30).

The bottom panel in Figure 5 shows the percentage of OLD
responses as a function of the encoding conditions. Whiskers show
one standard deviation above and below each mean. We used L =
.9 to bring simulated performance into the same range as in the
empirical data. Means represent performance averaged over 250
independent simulations of the procedure.

As shown, the model anticipates better recognition in the pro-
duction plus generation condition than in the generation alone
condition: an additive benefit of production over generation. Our
results are consistent with MacLeod’s (2010) speculation that the
two effects differ in what information they add to memory but that
they both benefit recognition because of peoples’ ability to retrieve
and use memory of additional features encoded at study. We
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conclude that the distinction between production and generation
can be modelled by assuming a common mechanism that operates
during retrieval of both sensory and associative features.

What Does a Strength Account Actually Predict?

In the introduction to this article, we pointed out that the production
effect has been developed against a binary distinction between distinc-
tiveness and strength. According to the distinctiveness account, produc-
tion renders a target distinctive and thus more memorable. According to
the strength account, production renders a target more strongly encoded
and thus more memorable. Received wisdom is that the distinctiveness
account predicts a much stronger mixed-list than pure-list production
effect whereas a strength account predicts equally probable and equally
sized mixed-list and a pure-list production effects (see MacLeod et al.,
2010). Because empirical data contradict predictions by the strength-
based account, it has been rejected in favor of the distinctiveness account.
But what does a strength-based account really predict?

To answer the question, we conducted a strength-based simula-
tion of the mixed- and pure-list production effects by encoding
both produced and unproduced targets with 20 features in Dimen-
sions 1 through 20 but encoding produced targets more strongly
than unproduced targets: L, = L,, + .1.> We used L to represent
differences in strength because that is the standard method to
manipulate the strength of encoding in MINERVA 2.

Figure 6 shows the percentage of OLD responses as a function
of encoding quality for the unproduced targets, L, where L, =
L, + .1. Whiskers show one standard deviation above and below
each mean. Results of the mixed-list simulations are presented in
the left column and results of the pure-list simulations are shown
in the right column. We show results for L,, = .1 through .9;
results for L,, = 1 are excluded because L, would equal 1.1 (i.e.,
greater than unity).

As shown in Figure 6, stronger encoding of the produced than
unproduced targets does not predict equal sized mixed-list and
pure-list production effects. In fact, a strength-based simulation
predicts precisely the same distinction in the mixed-list and pure-
list production effects as distinctiveness: a larger mixed-list than
pure-list production effect. But, predictions for the mixed-list
result for distinctiveness and strength are not equivalent. Whereas
the distinctiveness model predicts a small mixed-list production
effect that grows as a function of L, the strength model predicts a
big mixed-list production effect at all levels of L—a prediction that
might be refined to offer a proper test in the lab. For example, a
test of the mixed-versus pure-list production effects as a function
of study time or stimulus quality could discern the two (although,
a manipulation of either study time or stimulus quality is limited
by the practical fact that participants would need to be able to read
the word as well as have enough time to produce it).

Clearly, additional work is needed to differentiate the
strength versus distinctiveness accounts. But, the ability to
check assumptions and generate clear testable predictions con-
firms the wisdom of adopting a formal model (Estes, 1975,
2002; Farrell & Lewandowsky, 2010; Hintzman, 1991, 2011;
Lewandowsky, 1993).

General Discussion

People remember words that they say aloud better than words
that they do not say aloud (Conway & Gathercole, 1987; De Haan

et al., 2000; Dodson & Schacter, 2001; Gathercole & Conway,
1988; Hopkins & Edwards, 1972; MacLeod et al., 2010). This
production advantage has been explained as a consequence of
distinctiveness defined in terms of sensory feedback (Forrin et al.,
2012).

We implemented the sensory-feedback account of the produc-
tion effect using a model of memory inspired by MINERVA 2
(Hintzman, 1988). Our model specifies four characteristics essen-
tial to any memory account. It specifies representation assump-
tions: Each word is represented by a vector of binary features. It
specifies encoding: The vector for each studied item is appended to
the memory matrix. It specifies how a probe is handled on a
recognition trial: The probe activates each item in memory and
retrieves an echo; the echo content is used to compute echo
intensity. It specifies how a recognition decision is made: The echo
intensity is compared with a criterion and an OLD or NEW
decision is given. To simulate the production effect, we adopted
Forrin et al.”’s (2012) premise combined with Hintzman’s (1988)
modelling assumptions about encoding and distinctiveness to store
produced targets with more features than unproduced targets. We
used an iterative retrieval process to model how participants re-
trieve and use the added information when performing recognition
at test. The theory offers a competent account of a number of
results associated with the production effect in recognition mem-
ory.

Our model-based analysis offers a novel approach to examining the
production effect that involves a presentation of premises as well as
mechanisms in a manner that can be analytically and objectively
scrutinized (Estes, 1975, 2002; Farrell & Lewandowsky, 2010;
Hintzman, 1991, 2011; Lewandowsky, 1993). For example, consider
the difference between distinctiveness and strength. To make an event
distinctive, we added features to its corresponding trace in memory.
To encode an event more strongly, we increased encoding quality.
The definitions are intuitively satisfying. But a formal analysis of the
distinction exposed a problem. If increasing the number of nonzero
features in memory renders a trace distinctive, why does increasing L
(which also increases the number of nonzero features in memory)
render a trace strong? Because both of the ideas are defined concretely
in the model, the difference is easy to identify. Additional features in
produced targets are shared amongst produced targets only (i.e., the
added sensory features). By contrast, increasing L encodes features
that are shared among both produced and unproduced targets (i.e.,
shared base features). Thus, added sensory features are distinct by
virtue of being shared among only half of the studied targets—an idea
consistent with the definition of distinctiveness that MacLeod and
colleagues have been arguing.

There is, however, another issue exposed by the analysis. If
distinctiveness and strength both work by adding features to a trace
in memory, they are correlated concepts and, consequently, disso-
ciating the two by experimental design will prove a more difficult
or at least more complicated problem than is typically acknowl-
edged. Naturally, the verbal definitions of strength and distinctive-
ness that others have been using might differ from the definitions
in our model (Hunt, 2006). If so, we welcome others to import

> We conducted additional simulations with L, = L, + .2, L, = L, +
.3, and so on. As the difference between L, and L,, increased, the size of
the pure-list production effect increased.
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Figure 6. Strength-based simulations of the mixed-list and pure-list production effects. Contrary to expecta-
tions, a strength-based manipulation does not predict equal-sized mixed-list and pure-list production effects.

their own definitions into the model and test them. In our opinion,
that exercise would be an excellent outcome of the work presented
here because it would deepen the formal analysis of distinctiveness
and how it figures into an analysis of memory (Brown, Neath, &
Chater, 2007; Surprenant & Neath, 2009).

We adopted iterative retrieval to explain how the additional
information encoded during production becomes available at
test. Although simulations with MINERVA 2 have typically
used noniterative retrieval, the mechanism follows directly
from MINERVA 2’s iterative retrieval mechanism called de-
blurring (Hintzman, 1986, pp. 416-417) that involves retriev-
ing an echo, normalizing the echo, and presenting the normal-
ized echo as a secondary probe.

In our simulations, we deblurred to three iterations. But in the
original description, deblurring can be carried out indefinitely. Our
decision to deblur to three iterations follows advice by Hintzman
(1986) who suggested deblurring to a specified number of itera-
tions (i.e., he suggested three or four iterations). However, addi-
tional simulations deblurring to two and four iterations confirmed
that our model predictions are affected by but are not conditional
on that decision. Still, additional work might focus on a more
complete analysis of iterative retrieval and the role it plays in the
production effect.

Our account of distinctiveness and our discussion of the role it
plays in production is consistent with ideas developed in other
models. For example, memory theories focused on distinctiveness
typically conceive of memory as a high-dimensionality geometric
space, where each studied item is plotted as a coordinate in the
space. Distinctive items (i.e., items that differ from other items in
memory) are located in sparse and poorly populated regions.
Indistinctive items (i.e., items that do not differ much from other
items in memory) are located in dense and well-populated regions.
When a probe is presented to memory, it retrieves items near it.
Thus, a distinctive probe (i.e., one located in a sparse region of
memory) can retrieve itself without retrieving very many near

neighbors (i.e., because there are few). An indistinctive probe, on
the other hand, cannot help but retrieve many near neighbors (i.e.,
because it has many). By a difference of interference at retrieval,
distinctive items are retrieved more clearly than indistinctive
items—a factor that benefits recognition. This scheme is well
described in Brown et al.’s (2007) SIMPLE model of memory and
in the models it was developed from (e.g., Nairne, 1988, 1990).
The scheme is also largely consistent with our own: Adding
information on additional dimensions (i.e., production features)
moves produced words to a different region in memorial space
compared with unproduced words. But, there are some important
differences.

The SIMPLE and Feature Models are developed for recall
whereas the MINERVA 2 model was developed—and in this
analysis tested—for recognition. Thus, a comparative analysis of
distinctiveness in SIMPLE and MINERVA 2 would require not
only measurements but also a degree of redesign. We leave this
comparison and cross-examination to future effort.

The simulations that we have presented offer postdictions.
But, of course, the purpose and true value of a model is
prediction. For example, the theory could be used to generate
predictions for the interaction of semantic and sensory distinc-
tiveness. This can be accomplished in an experiment by pre-
senting words that are semantically congruous versus incongru-
ous, some of which are produced and some of which are not.
The model might also be used to examine the influence of
various experimental factors such as correlated sensory fea-
tures, the number of study opportunities, the length of the study
list, and depth of processing. As Lewandowsky (1993) has
noted, computational theory is valuable because it can be used
to generate predictions about performance under a large number
of conditions and manipulations. It is also valuable because it
ensures that predictions over multiple complex designs agree
with one another and are not led astray by intuitive assumptions
or oversights. We hope that the model will serve that purpose
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and help researchers to develop new and sophisticated experi-
mental designs for exploring the role of distinctiveness in
recognition memory.

In his now famous critique, Newell (1973) argued that psychol-
ogy had overinvested in discovering phenomena when it should
have been working to develop a coherent theory of behavior. His
grim assessment likened psychology’s phenomena-driven strategy
to Victorian biology, prompting the image of a pith-helmeted
avuncular gentleman pursuing specimens with butterfly net in
hand. Based on that analysis, he forecasted an unhappy future in
which psychology would grow into an overwhelming and inco-
herent database requiring researchers to develop local theories for
local phenomena instead of searching for a coherent and unified
explanation of behavior in general.

Our analysis takes Newell’s (1973) warning to heart. Rather
than contribute to the rapidly expanding empirical database on the
production effect, we have paused to present a formal look at the
data in hand from the perspective of standard theory. We are
delighted to report that data and theory fit nicely. But, of course,
our analysis has limits. First, the production effect is observed in
recognition, recall, and source monitoring. Our analysis addresses
recognition only. Second, we have represented words with random
vectors. But, words are nonrandom events with semantic, ortho-
graphic, and phonological relations. A more complete model
would use vectors that contained those relationships (see Chubala,
Johns, Jamieson, & Mewhort, 2016). Third, a model is a simpli-
fication of an idea and, accordingly, our definition of distinctive-
ness might be impoverished relative to Forrin et al.’s (2012) ideas.
We note, however, that the apparent problem is really a strength if
it forces a more careful explication of the intuitive ideas about
distinctiveness thought to support the production effect.

Our decision to use MINERVA 2 was deliberate. The theory has
been used by a number of researchers in a number of laboratories
to examine different psychological problems. Hintzman (1984,
1986, 1987, 1988) invented the theory to model recognition,
frequency-judgment, classification, and cued-recall and to collapse
the distinction between episodic and semantic memory. Jamieson
and Mewhort (2009a, 2009b) used the theory to model implicit
learning. Jamieson, Crump, and Hannah (2012) used the theory to
model associative learning. Arndt and Hirshman (1998) used the
theory to understand false recognition. Dougherty et al. (1999)
used the theory to understand decision-making (Thomas, Dough-
erty, Sprenger, & Harbison, 2008). Kwantes and Mewhort (1999)
used the theory to understand pronunciation in reading. Goldinger
(1998) used the theory to understand speech normalization.
Jamieson et al. (2010) used the theory to understand selective
memory impairment in amnesia. Benjamin (2010) used the theory
to investigate selective memory impairment in aging. Clark (1997)
used the theory to explain confidence-accuracy inversions in rec-
ognition memory. Kwantes (2005) used the theory to explain se-
mantic representation. And so on. Explaining the production effect
using a model that is already known to explain other phenomena
exemplifies the kind of productive and unified approach to under-
standing memory that Newell (1973, 1990) and others have called for
(see Eliasmith et al., 2012; Surprenant & Neath, 2009). But is there
value in building a unified account of memory?

In Newell’s (1973) view, psychology had adopted a strategy of
assuming nature can be understood by a series of binary divisions
and decisions. Is the production effect due to distinctiveness or

strength? Is recognition based on recollection or familiarity? Are
categories represented by instances or prototypes? Although a
strategy focused on resolving forced dichotomies is seductive,
Newell warned that it yields a false impression of progress. To
make the point, he asked an embarrassing rhetorical question: How
many binary questions until we get to the core and truth about
human behavior?

Rather than play 20 questions with nature, Newell (1973) argued
that psychology should begin by specifying its principles and
organizing them in a formal system. If the formal system’s behav-
ior matches that of the corresponding natural system (i.e., people),
the principles can be regarded as sound. If not, they need revision
or replacement. Of course, Newell’s argument forces a larger
reckoning. To build a complete behaving system, the theorist must
consider how principles are coordinated and related on the whole.
The strategy moves us away from dividing nature and playing 20
questions toward a more nuanced position on principles and be-
havior. Rather than ask whether the production effect is due to
distinctiveness or strength, Newell’s perspective asks how those
concepts can be represented and how they should be mechanized
in a way that translates into behavior. It also asks the hard question
of how that can be accomplished in a theory that also explains
other phenomena.

Of course, from Newell’s (1973) perspective, we are not angels.
The iterative retrieval idea that we used to acknowledge that
subjects use information about production to assist in recognition
is a special case of the usual retrieval process, forced by the
production effect itself. That is, we explained the production effect
by reconsidering how retrieval must work in the model. Yet, it is
interesting to note that the change in the formal account that was
needed to accommodate what appears to be an encoding effect
(i.e., production at study) turned out to force a reconsideration of
the mechanism for retrieval.

Résumé

Les gens se rappellent les mots qu’ils ont lus a haute voix mieux
que ceux qu’ils ont lus silencieusement, un résultat appelé «
effet de la production ». Cet effet serait attribuable au fait que
lecture d’un mot a haute voix en accroit la distinctivité dans la
mémoire, ce qui le rendrait plus facile & retenir. Selon un
compte-rendu d’importance, la distinctivité est définie au
moyen de la rétroaction sensorielle. Nous avons formalisé ce
compte-rendu de rétroaction sensorielle au moyen de
MINERVA 2, un modele de la mémoire standard. Ce modele
s’adapte au résultat de base de la reconnaissance et au fait que
I’effet de la production de la liste mixte est supérieur a celui de
liste pure, que I’effet de la production est robuste face a I’oubli,
et que les effets de la production et de la génération ont un effet
cumulatif sur le rendement. Une derniere simulation est axée
sur I’explication basée sur les forces et suggere qu’il sera plus
difficile de faire la distinction entre une explication basée sur
les forces et une explication basée sur la distinctivité, plus
répandue. Nous concluons que I’effet de la production est
conforme a la théorie actuelle, pour ensuite discuter de notre
analyse en relation avec la critique d’Alan Newell (1973) de la
psychologie tout en souhaitant que soit réalisée une analyse de
principes psychologiques plutot que de phénomenes de labora-
toire.
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Mots-clés : effet de la production, mémoire de reconnaissance,
MINERVA 2, distinctivité.
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