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Abstract In artificial grammar learning experiments,

participants study strings of letters constructed using a

grammar and then sort novel grammatical test exemplars

from novel ungrammatical ones. The ability to distinguish

grammatical from ungrammatical strings is often taken as

evidence that the participants have induced the rules of the

grammar. We show that judgements of grammaticality are

predicted by the local redundancy of the test strings, not by

grammaticality itself. The prediction holds in a transfer test

in which test strings involve different letters than the

training strings. Local redundancy is usually confounded

with grammaticality in stimuli widely used in the literature.

The confounding explains why the ability to distinguish

grammatical from ungrammatical strings has popularized

the idea that participants have induced the rules of the

grammar, when they have not. We discuss the judgement

of grammaticality task in terms of attribute substitution and

pattern goodness. When asked to judge grammaticality (an

inaccessible attribute), participants answer an easier ques-

tion about pattern goodness (an accessible attribute).

Introduction

In an artificial grammar task, participants study stimuli

constructed according to the rules of a finite-state grammar

(e.g., Fig. 1). Following study, the participants are asked to

sort novel grammatical from ungrammatical test items.

Typically, they can sort the grammatical from the un-

grammatical items, but they cannot articulate the rules.

Some theorists have taken the ability to sort gram-

matical from ungrammatical test items as evidence for

implicit rule induction (e.g., Reber, 1967, 1989; Knowlton

& Squire, 1994, 1996). Others argue that participants judge

a test string’s grammaticality on the basis of its similarity

to the studied list (e.g., Brooks, 1978; Jamieson & Me-

whort, 2009a, 2010; Perruchet & Pacteau, 1990; Pothos &

Bailey, 2000; Vokey & Brooks, 1992).

Although the similarity-based position accommodates a

majority of the data in the implicit-learning database, it

cannot handle the transfer version of the standard task (e.g.,

Reber, 1969; Manza & Reber, 1997). In the transfer task,

participants study grammatical training strings composed of

one set of letters but are tested on strings composed of

different letters. For example, they might study strings such

as MTVXRM and TXRMMV and, then, judge the gram-

matical status of test strings such as BQHZ and PKQZZB.

Changing the letters obscures the similarity of the training

and test items; hence, successful transfer challenges the

similarity-based accounts. As a result, success in the

transfer task reinvigorates the case for implicit rule induc-

tion (e.g., Knowlton & Squire, 1996; Mathews et al., 1989).

Brooks and Vokey (1991) rebutted the reinvigorated

claim for rule induction by arguing that participants use

both analogical and literal similarity to judge test strings.

For example, participants might endorse the test string

BCCCCD as grammatical because its pattern of unique and

repeated symbols is similar to the pattern in the training

string VMMMMR (see also Vokey & Higham, 2005; Lotz

& Kinder, 2006). We take Brooks and Vokey’s point, but

we note that specific pattern similarity is a special case of a

more general stimulus property, local redundancy (see

Garner, 1962, 1974; Jamieson & Mewhort, 2005).
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Information theory has been used to examine and predict

behavior in a number of research domains. Garner and

Clement (1963) used information theory to predict peoples’

preference for visual patterns. Hick (1952) and Hyman

(1953) used it to predict performance in speeded choice.

Miller (1956) used information theory to quantify the

processing limits of immediate memory (see also Miller,

Bruner & Postman, 1954). Berlyne (1971) used it to relate

stimulus complexity to arousal, and Meyer (1956) used it to

relate musical structure to emotion. More recently,

Jamieson and Mewhort (2005, 2009b; see also Pothos,

2010) used information theory to predict serial recall and

judgement of grammaticality in the artificial grammar task.

Informally, redundancy refers to the stability of relations

between elements within a sequence. For example, the

relations between the letters T, V, and X are more regular

and thus more redundant in the sequence TVXTVX than in

the sequence XTVTXV. In general, redundant sequences

have the quality of being well patterned, whereas non-re-

dundant sequences do not.

Formally, redundancy is a statistic that quantifies the

degree of internal constraint in a sequence (e.g., Attneave,

1959; Garner, 1962; Shannon & Weaver, 1949). Redun-

dancy ranges from 0 to 1. If redundancy equals 0, the

sequence is perfectly unpredictable (i.e., random). If it

equals 1, the sequence is perfectly predictable. If redun-

dancy is intermediate between 0 and 1, the sequence is

partially predictable (i.e., structured but not determined).

In the context of the artificial grammar task, zero-order

local redundancy, R0, indexes the predictability of indi-

vidual letters in a string,

R0 ¼ 1��
Pm

i¼1 pi log2ðpiÞ
log2ðnÞ

; ð1Þ

where m is the number of symbols in the string, n is the

string length, and pi is the probability of symbol i in the

string. To illustrate the measure, consider the three strings

ABABABAB, ABCDABCD, and ABCDEFGH. ABABABAB

has two unique symbols {A, B} both of which occur with

probability 0.5. Therefore, ABABABAB has a zero-order

redundancy equal to 0.67. ABCDABCD has four unique

symbols {A, B, C, D} all of which occur with probability

0.25. Therefore, ABCDABCD has a zero-order redundancy

equal to 0.33. Finally, ABCDEFGH has eight unique

symbols {A, B, C, D, E, F, G, H} all of which occur with

probability 0.125. Therefore, ABCDEFGH has a zero-order

local redundancy equal to 0. Note that if the number of

unique letters in a string, m, is equal to the number of

letters in the string, n, the numerator in Eq. 1 (i.e., the

Shannon entropy), �
Pm

i¼1 pi log2 pið Þ; is equal to the de-

nominator, log2 nð Þ.
Strings can also be measured at the first order of local

redundancy, R1, which indexes the predictability of bi-

grams rather than letters within a string,

R1 ¼ 1�
�
Pm

i¼1

Pm
j¼1 pij log2ðpijÞ

log2 n� 1ð Þ ; ð2Þ

where m is the number of unique symbols in the string, n is

the string length, and pij is the probability that letter i

follows letter j in the string. Like R0, R1 ranges between 0

and 1 with larger values indicating greater sequential pre-

dictability. Note that maximal uncertainty is now equal to

log2 n� 1ð Þ because there are only n - 1 bigrams in a

string of length n. In summary, local redundancy provides a

defined and formal measure of stimulus structure, a vari-

able that is known to predict judgements of well

formedness.

In this paper, we investigate the role of local redundancy

in judgments of grammaticality. Specifically, we assess the

proposition that people judge the grammaticality of a string

by its redundancy, not by its grammaticality. Because local

redundancy does not require a comparison of the test string

to the training list, and because redundancy is independent

of the letters used to construct an item, we expect that

participants will use redundancy similarly in both the

standard and transfer versions of the grammaticality task.

Finally, assuming that grammaticality and redundancy are

confounded, judgement of grammaticality by redundancy

will yield an illusion that participants know the grammar

when, in fact, they may not.

Experiment 1

Experiment 1 asks if local redundancy predicts par-

ticipants’ ratings of grammaticality in the transfer task. The

experiment included a training phase followed by a test

phase. In the training phase, participants studied gram-

matical training strings instantiated using one set of letters.

In the test phase, participants judged the grammatical status

Fig. 1 The finite-state grammar used in Experiments 3 and 4. A

grammatical string is constructed by entering the grammar at the

leftmost node marked 1 and following the paths (indicated by arrows)

until reaching an exit path from nodes 3, 5, or 6. When a path is taken,

the associated letter is added to the end of the string. For example,

moving from nodes 1 to 2, 2 to 3, 3 to 5, 5 to 2, and 2 to 3 produces

the string BFJBF
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of novel test strings constructed using a different set of

letters. We allowed redundancy to vary freely, with the

intent to examine the relationship between judgements of

grammaticality and local redundancy after the fact.

Method

Participants

Eight undergraduate students from Queen’s University

participated in the experiment. All reported normal or

corrected-to-normal vision.

Apparatus

The experiment was administered on a desktop computer

equipped with a 17-inch. CRT monitor, a standard key-

board, and a standard mouse.

Stimuli

Materials were constructed using the grammar in Table 1.

The grammar in Table 1 presents the probabilities with

which letters B, C, D, F, G, H, J, and K could follow one

another in successive serial positions of a string. For ex-

ample, the letter B could be followed by the letters F and

K but could not be followed by itself or the letters C, D, G,

H, or J.

We used the grammar to generate 60 unique gram-

matical and 20 unique ungrammatical strings. All strings

were eight letters in length. To construct a grammatical

string, we selected the first letter at random and then se-

lected letters to the subsequent positions according to the

transition probabilities in the grammar. If the sequence was

already included in the stimulus list, it was discarded and

replaced. The process was repeated until we had con-

structed 60 unique grammatical sequences.

The ungrammatical sequences were constructed by se-

lecting letters at random and with replacement from the set

{B, C, D, F, G, H, J, K} to each of the eight positions in the

string. Sequences that did not include at least one illegal

transition or that were already included in the list were

discarded and replaced.

Forty of the grammatical strings were assigned to the

training list. The remaining 20 grammatical strings and the

20 ungrammatical strings were assigned to the test list. The

test items were rewritten by randomly mapping the letters

L, N, P, R, S, T, Y, and Z to the letters B, C, D, F, G, H, J,

and K, and rewriting the test strings accordingly. The full

list of materials is presented in ‘‘Appendix 1’’.

Procedure

The participant was seated at a computer terminal. The

word ‘‘Study’’ was printed at the center of the screen. The

participant was told that letter strings would be presented

on the screen and that it would be his or her job to read

each string silently.

When the participant clicked on the word ‘‘Study’’, the

screen was cleared. Three-quarters of a second later, the

first training string was presented for 6 s after which the

screen was cleared; 750 ms later, the next training string

was presented. The cycle continued until all 40 of the

training strings had been shown.

After presenting the training items, instructions for the

test phase were provided. The instructions indicated (a) that

the study materials had been generated using rules, (b) that

the task was to rate the rule compliance of novel test

strings, (c) that half of the test strings would follow the

rules and half would not, and (d) that the test strings would

be constructed using different letters than the training

strings. The participant clicked on a word ‘‘Begin’’ to start

the test phase.

On each test trial, a string was presented at the center of

the computer screen. A response tool was presented below

it. The response tool was a line approximately 4 cm in

length. Tick marks visibly dissected the line into four

equally spaced regions. However, the line was invisibly

dissected into 100 points corresponding to numbers -100

to -1 to the left of the midpoint (i.e., 0) and 100 points

corresponding to numbers 1–100 to the right of the mid-

point. A slider was positioned at the center of the line (i.e.,

the position corresponding to zero). The phrases ‘‘Does not

conform to the rules’’ and ‘‘Conforms to the rules’’ were

displayed to the left and right of the line, respectively. The

word ‘‘OK’’ was displayed below the line.

To submit a response, the participant moved the slider to

a position along the line and then clicked on the word

‘‘OK’’. When the participant clicked on ‘‘OK’’, their rating

between -100 and ?100 was recorded to a response file,

Table 1 The grammar used to construct stimuli in Experiment 1

Letter in position n Letter in position n ? 1

B C D F G H J K

B 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

C 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0

D 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

F 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0

G 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5

H 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0

J 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5

K 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5

The grammar shows transition probabilities for letters B, C, D, F, G,

H, J, and K in position n to position n ? 1 of a sequence
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the screen was cleared, and after a 1 s pause, the next test

string was presented. If the participant clicked ‘‘OK’’

without moving the slider, a message was presented in-

structing the participant to move the slider. The cycle

continued until all of the test strings had been presented,

and the participant had provided a response to each one.

Following the series of test trials, a text editor was

presented along with a message that invited the participant

to describe the rules of the grammar. The participant used

the computer keyboard to type the rules.

Results and discussion

The mean rating for grammatical strings (M = 12.95,

SD = 4.68) was higher than the mean rating for ungram-

matical strings (M = -4.34, SD = 8.81), t(7) = 7.67,

p\ 0.001. Participants discriminated grammatical from

ungrammatical test strings.

We computed the correlation between each participant’s

item ratings against calculations of both zero- and first-

order local redundancy. The mean correlation between

ratings and zero-order local redundancy was 0.27

(SD = 0.21), t(7) = 3.67, p\ 0.01; the mean correlation

between ratings and first-order local redundancy was 0.25

(SD = 0.21), t(7) = 3.33, p\ 0.02.1

Finally, we measured the confounding between gram-

matical status and local redundancy. As expected (see

Jamieson & Mewhort, 2005), grammatical test strings were

more redundant than ungrammatical test strings at both the

zero- (M = 0.38 versus M = 0.24), t(38) = 3.29,

p\ 0.01, and first- (M = 0.20 versus M = 0.02),

t(38) = 4.18, p\ 0.001, orders of redundancy.

In summary, participants’ judgements are consistent

with discrimination based on both grammatical status and

local redundancy. However, because the two factors are

confounded, it remains unclear which factor participants

used. To disentangle the two factors, we must separate

grammaticality from redundancy. But, another issue must

be addressed first.

All of our participants identified single-letter runs as a

salient characteristic of the materials (e.g., SLLLLLLR).

Importantly, several participants indicated that they used

single-letter runs as a basis for judgement (Kinder &

Assmann, 2000; Redington & Chater, 1996).

A post hoc analysis confirmed that participants did rate

strings with single-letter repetitions as more grammatical

than strings without. However, it also revealed that our

materials not only confounded grammaticality and redun-

dancy but also confounded both of those factors with sin-

gle-letter runs: 90 % of the grammatical strings included a

single letter but only 45 % of the ungrammatical strings

did. Because redundancy measures predictability, and be-

cause single-letter runs introduce predictability, local re-

dundancy is necessarily confounded with their occurrence.

Such multiple confounding not only illustrates the diffi-

culty of identifying the basis of peoples’ decisions, but also

points to the need to bring stimulus properties under ex-

perimental control.

Experiment 2

In Experiment 2, we assess the role of single-letter runs in

the results from Experiment 1. To do so, we repeated Ex-

periment 1, but excluded single-letter runs from both

training and test strings. If participants relied on single-

letter runs but not redundancy to judge the grammaticality

of test strings, their judgements should no longer correlate

with redundancy (or perhaps grammaticality).

Method

Participants

Eight undergraduate students from Queen’s University

participated in the experiment. All reported normal or

corrected-to-normal vision.

Apparatus

We used the same apparatus as in Experiment 1.

Stimuli

Materials were constructed in the same way as in Ex-

periment 1. However, grammaticality was defined by the

grammar in Table 2. As shown, each letter could be fol-

lowed by two others in the set; hence, the two grammars

have equal grammatical redundancy. However, the gram-

mar differed in two ways. Firstly, no letter could be fol-

lowed by itself, thereby eliminating single-letter runs.

Secondly, the letter H was exchanged for the letter N in the

training list and the letter N was exchanged for letter

X when rewriting strings in the test list.2 The materials are

presented in full in ‘‘Appendix 2’’.
1 Collapsing ratings over participants, the correlation between mean

ratings and zero-order redundancy was r(38) = 0.47, p\ 0.01,

whereas the correlation between mean ratings and first-order redun-

dancy was r(38) = 0.45, p\ 0.01. Although the correlations com-

puted in this way are more impressive, they are subject to an

overestimation bias (see Lorch & Myers, 1990).

2 We made the change because letters H and N looked similar to one

another.
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Procedure

The procedure was the same as Experiment 1.

Results and discussion

Results were consistent with Experiment 1. The mean

rating for grammatical strings (M = 6.81, SD = 7.41) was

higher than the mean rating for ungrammatical strings

(M = -2.27, SD = 9.16), t(7) = 2.45, p\ 0.05. The

mean correlation between ratings and zero-order local re-

dundancy was equal to 0.43 (SD = 0.15), t(7) = 8.31,

p\ 0.0001, and the correlation between ratings and first-

order local redundancy was equal to 0.38, (SD = 0.21),

t(7) = 5.20, p\ 0.01, p\ 0.01.3

Although the data resolve one uncertainty (i.e., the

correlation between ratings and redundancy was not based

solely on the confounding with single-letter runs), they still

do not distinguish whether performance reflects knowledge

of grammaticality or redundancy. To assess the distinction,

we tested discrimination in a third experiment where the

materials unconfounded grammaticality and redundancy.

Experiment 3

As before, participants studied grammatical strings and

then judged the grammatical status of test strings. Par-

ticipants assigned to a standard condition were shown

training and test strings constructed with the same letters.

Participants assigned to a transfer condition were shown

training strings constructed with one set of letters and test

strings constructed with a different set of letters. Par-

ticipants assigned to no-study control condition rated the

grammaticality of test strings without the benefit of study.

We designed the test items so that half were gram-

matical and half were ungrammatical. We also balanced

redundancy across the factor of grammaticality: within

each class, one-third of the strings had low first-order re-

dundancy, one-third had medium first-order redundancy,

and one-third had high first-order redundancy.

If participants’ discrimination of grammaticality in Ex-

periments 1 and 2 reflects a confounding of redundancy

and grammaticality, the participants should not dis-

criminate grammatical from ungrammatical strings in the

current experiment. Instead, we anticipate that participants’

ratings will track redundancy in all three of the study

conditions (standard, transfer, and control).

Method

Participants

Forty-eight students from the University of Manitoba par-

ticipated in the study. Sixteen participants were assigned to

the standard condition, 16 to the transfer condition, and 16

to the no-study control condition. All participants reported

normal or corrected-to-normal vision.

Apparatus

The experiment was administered on desktop computers.

Each computer was equipped with a 22-inch. wide- and

flat-screen monitor, a standard keyboard, and a standard

mouse.

Materials

The stimuli were consonant strings constructed using the

grammar in Fig. 1. To select the materials, we generated all

72 strings that included at least four and no more than eight

letters. Next, we selected 24 of the 72 grammatical items to

the test list: Eight of the test items had low redundancy

(M[R0] = 0.20, M[R1] = 0.00), eight had medium redun-

dancy (M[R0] = 0.32, M[R1] = 0.14), and eight had high

redundancy (M[R0] = 0.33, M[R1] = 0.25). Then, we re-

arranged the letters in each of the grammatical test strings to

generate a corresponding ungrammatical test string with the

same (or nearly the same) first-order local redundancy. Of

the 24 ungrammatical test strings, eight were low redun-

dancy (M[R0] = 0.20, M[R1] = 0.00), eight were medium

redundancy (M[R0] = 0.31, M[R1] = 0.15), and eight were

high redundancy (M[R0] = 0.33, M[R1] = 0.24).

After we had constructed the test list, we selected 30 of

the remaining 48 grammatical strings to serve as training

Table 2 The grammar used to construct stimuli in Experiment 2

Letter in position n Letter in position n ? 1

B C D F G N J K

B 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

C 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0

D 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0

F 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0

G 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5

N 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5

J 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0

K 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0

The grammar shows transition probabilities for letters B, C, D, F, G,

H, N, and K in position n to position n ? 1 of a sequence

3 Collapsing over participants, the correlation between ratings and

zero-order redundancy was r(38) = 0.77, p\ 0.01, whereas the

correlation with first-order redundancy was r(38) = 0.68, p\ 0.01.

Although the correlations computed in this way are more impressive,

they are subject to an overestimation bias (see Lorch & Myers, 1990).
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items. The training list had a mean zero-order local re-

dundancy equal to 0.27 (SD = 0.11) and a mean first-order

local redundancy equal to 0.10 (SD = 0.13). The training

list in the transfer condition was structurally identical to the

training list in the standard condition, except that the letters

X, Q, H, M, and D, were substituted for the letters B, F, J,

L, and Z, respectively. The full set of materials is presented

in ‘‘Appendix 3’’.

Procedure

The procedure was nearly identical to procedure from

Experiments 1 and 2 with four exceptions: (a) Participants

were tested in groups with each participant seated at a

different computer terminal; (b) each training string was

presented for 8 rather than 6 s; (c) the training list included

30 rather than 40 grammatical strings; and, (d) the phrases

‘‘Conforms to the rules’’ and ‘‘Does not conform to the

rules’’ were replaced with the phrases ‘‘Grammatical’’ and

‘‘Ungrammatical’’ in the response tool.

Results and discussion

Figure 2 shows the mean grammaticality rating (slider

position) for each class of test item as a function of both

grammaticality (grammatical and ungrammatical) and local

redundancy (low, medium, and high). Whiskers indicate

one standard error above and below each mean. Perfor-

mance of the standard group is shown on the left. Perfor-

mance of the transfer group is shown in the center.

Performance by the no-study control group is shown on the

right.

We analyzed the data using a three-factor ANOVA

model with grammaticality as a two-level within-subjects

factor, redundancy as a three-level within-subjects factor,

and test condition as a three-level between-subjects factor.

As shown in Fig. 2, participants in all three conditions rated

high-redundancy strings (M = 18.55, SD = 25.69) as more

grammatical than medium-redundancy strings (M = 9.05,

SD = 23.57) and rated medium-redundancy strings as more

grammatical than low-redundancy strings (M = -12.25,

SD = 22.25), F(2, 90) = 33.08, p\ 0.0001. In contrast,

only participants in the standard study condition dis-

criminated grammatical from ungrammatical test items:

whereas participants in the standard study condition dis-

criminated grammatical from ungrammatical test strings

better than participants in the no-study control condition,

F(1, 45) = 4.55, p\ 0.05, participants in the transfer

condition did not, F(1, 45) = 0.94, p[ 0.30.

Unlike the data from Experiments 1 and 2, performance

in the transfer condition provided no evidence that par-

ticipants knew the grammar, implicitly or otherwise.

Critically, the null result was a possibility anticipated in

our experimental design. In summary, after grammatical

and ungrammatical strings are balanced for redundancy,

participants’ use of redundancy to infer grammaticality

ceased to distinguish grammatical from ungrammatical test

strings. However, there is a potential weakness in our

analysis.

Under usual conditions, the amount of structure in a

grammatical stimulus derives from the structure in the

underlying grammar (Jamieson & Mewhort, 2005). For

example, in Experiments 1 and 2, training and test strings

were sampled from the grammar at random and, accord-

ingly, grammatical strings were, on average, more redun-

dant than ungrammatical strings. By contrast, in

Experiment 3, we were able to separate the two factors, but

we had to work hard to do so.

Fig. 2 Mean grammaticality ratings as a function of redundancy and

grammatical status. Performance by the standard group is shown in

the left panel. Performance by the transfer group is shown in the

middle panel. Performance by the no-study control group is shown in

the right panel. Whiskers indicate one standard error above and below

each mean
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Unfortunately, the strategy of selecting materials to

unconfound redundancy and grammaticality may have

forced us to distort the participants’ view of the underlying

grammar. If so, one could argue that participants’ failure to

discriminate grammatical from ungrammatical test strings

in the transfer condition reflects an unfair test rather than a

demonstration that participants failed to learn.

To resolve the problem, we used Poletiek and van

Schijndel’s (2009) statistical coverage to measure how

well the strings in our training list covered the grammar.

Like redundancy, statistical coverage ranges between 0 and

1, with larger values signifying better coverage.

Statistical coverage, SC, of a string is equal to the

product of its corresponding first-order transition prob-

abilities in the underlying grammar,

SC ¼
Yn�1

i¼1

pi;ðiþ1Þ; ð3Þ

where n is the length of the string, i indexes the serial

position in the string, and pi,(i?1) is the transition prob-

ability associated with the grammatical transition between

letters at serial positions i and (i ? 1) in the string. For

example, using the grammar in Fig. 1, the string ZFJBFL

has a statistical coverage equal to 1
2
� 1

2
� 1

3
�

1
3
� 1

2
� 1

3
¼ 0:0046, whereas the string ZLBF has a better

statistical coverage equal to 1
2
� 1

2
� 1

2
� 1

3
� 1

3
¼ 0:139.

Formally, a string’s statistical coverage represents the

probability that it is generated by the grammar. Psycho-

logically, a string’s statistical coverage represents how well

the string represents the grammar.

The measure of string-specific statistical coverage can

be extended to quantify the statistical coverage offered by a

list of items. List wise statistical coverage, SCL, is com-

puted as,

SCL ¼
Xm

i¼1

SCi; ð4Þ

where m is the number of strings in the training list and

i indexes the 1…m strings. To illustrate, a training list that

includes the two strings discussed above would have a list

wise statistical coverage equal to 0.0046 ? 0.0139 =

0.0185. The greater the list wise statistical coverage, the

better the list covers the grammar.

Disappointingly, the statistical coverage offered by the

30 training strings in Experiment 3 (SCL = 0.0855) was

much smaller than the statistical coverage expected from a

random sample of 30 strings from the full list 72 gram-

matical strings between 4 and 8 characters in length

(M[SCL] = 0.1401). In fact, a Monte Carlo analysis con-

firmed that the training list’s SCL of 0.0855 was statisti-

cally unlikely relative to a random sampling distribution,

p\ 0.07.

In summary, the training list used in Experiment 3 of-

fered a poor view of the grammar in Fig. 1. Consequently,

it may be premature to conclude that participants in the

transfer condition cannot learn to discriminate the test

strings on the basis of grammaticality.

To resolve the ambiguity, we conducted a fourth ex-

periment. In the experiment, we presented participants with

the same test strings. However, we presented participants

with a different list of training strings selected to offer good

statistical coverage of the underlying grammar,

SCL = 0.1955. If the failure to discriminate grammatical

from ungrammatical test strings in Experiment 3 reflects a

consequence of poor grammatical coverage, participants in

the transfer condition should now be able to discriminate

grammatical from ungrammatical test strings.

Experiment 4

We re-ran both the standard and transfer study conditions

from Experiment 3. The only difference was that the

training list offered two times the grammatical coverage of

the training list from Experiment 3.

Method

Participants

Thirty-two students from the University of Manitoba un-

dergraduate participant pool took part in the study. Half of

the participants were assigned to a standard condition; the

remaining participants were assigned to the corresponding

transfer condition. All participants reported normal or

corrected-to-normal vision.

Apparatus

See Experiment 3.

Materials

The full set of materials is shown in ‘‘Appendix 4’’.

As shown, the test strings in the current experiment are

identical to the test strings presented in Experiment 3.

However, the training strings differed. As in Experiment 3,

training strings in the transfer condition were rewritten such

that the letters X, Q, H,M, and D replaced the letters B, F, J,

L, and Z, respectively. The list had SCL = 0.1953, double

that of the training list from Experiment 3 and statistically

better than the coverage offered by random samples of

strings, p\ 0.05. The strings had a mean zero-order local

redundancy equal to 0.65 (SD = 0.31) and a mean first-

order local redundancy equal to 0.24 (SD = 0.32).
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Procedure

See Experiment 3.

Results and discussion

Figure 3 shows the mean grammaticality rating (slider

position) for each class of stimulus as a function of both

grammaticality (grammatical and ungrammatical) and local

redundancy (low, medium, and high). Performance of the

standard study group is shown on the left. Performance of

the transfer group is presented on the right.

As shown, participants in both conditions rated high-

redundancy strings (M = 17.96, SD = 30.46) as more

grammatical than medium-redundancy strings (M = 9.95,

SD = 25.53) and rated medium-redundancy strings as

more grammatical than low-redundancy strings (M = -

3.55, SD = 28.69), F(2, 60) = 14.82, p\ 0.0001. How-

ever, discrimination of grammatical from ungrammatical

strings depended on the condition. Whereas participants in

the standard study condition discriminated grammatical

from ungrammatical strings, F(1, 15) = 25.16, p\ 0.001,

participants in the transfer condition did not,

F(1, 15) = 3.23, p[ 0.09; the test for the two-way inter-

action confirmed the contrast, F(1, 30) = 11.51, p\ 0.01.

For completeness, we also conducted a series of cross

experiment comparison. Firstly, whereas participants in the

standard study condition discriminated grammaticality

better than participants in the no-study control group from

Experiment 3, F(1, 30) = 14.75, p\ 0.001, participants in

the transfer condition did not, F(1, 30) = 0.89, p[ 0.37.

Secondly, whereas increasing statistical coverage in the

training list improved discrimination of grammaticality by

participants in the standard condition, F(1, 30) = 4.65,

p\ 0.04, it did not affect discrimination by participants in

the transfer condition, F(1, 30) = 0.02, p[ 0.85. In fact, a

visual comparison of results in Experiments 3 and 4 shows

a strong impact of statistical coverage on performance in

the standard condition with almost no impact whatsoever

on performance in the transfer condition.

Finally, we examined judgements of grammaticality as a

function of statistical coverage. Judgements were uncor-

related with the statistical coverage of individual test

strings, r(46) = -0.14, p[ 0.35.

Increasing the grammatical coverage of the training list

improved discrimination of grammatical from ungram-

matical test strings, but the improvement was constrained

to performance in the standard test condition. The differ-

ence suggests that statistical coverage may only be relevant

to an understanding of performance in the standard test.

We conclude that participants’ failure to discriminate

grammatical from ungrammatical strings in the transfer

condition of Experiment 3 represents ignorance of the

grammar, not an artifact of poor statistical coverage fol-

lowing from our stimulus-selection strategies.

General discussion

We conducted four experiments to examine judgement of

grammaticality as a function of local redundancy. In Ex-

periment 1, we showed that judgements in a transfer test

are correlated with both grammatical status and local re-

dundancy. In Experiment 2, we showed that the correlation

is not constrained to endorsement of strings with single-

letter repetitions. In Experiment 3, we unconfounded re-

dundancy from grammaticality and tested discrimination of

grammaticality in both the standard and transfer tests.

Although participants in both conditions discriminated

strings consistent with redundancy, only participants in the

standard test condition discriminated strings consistent

with grammaticality; performance in no-study group was

Fig. 3 Mean grammaticality

rating as a function of

grammatical status and local

redundancy. Performance by the

standard group is shown on the

left. Performance by the transfer

group is shown in the right.

Whiskers indicate one standard

error above and below the mean
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also correlated with redundancy. In a final experiment, we

increased the statistical coverage of the training list and

repeated Experiment 3. Despite the change in materials,

results were stable: participants in both conditions dis-

criminated strings consistent with local redundancy, but

only participants in the standard condition discriminated

strings consistent with grammaticality. Our data show that

people use local redundancy to infer grammaticality when

test strings are constructed with the same or with different

letters than the training strings, and even when the training

phase is excluded altogether.

Our examination joins with a history of work focused on

identifying the basis for judgements of grammaticality:

rules (Reber, 1967), micro rules (Dulany, Carlson &

Dewey, 1984), specific similarity (Vokey & Brooks, 1992),

fragment similarity (Perruchet & Pacteau, 1990), ana-

logical similarity (Brooks & Vokey, 1991), global simi-

larity (Jamieson & Mewhort, 2009a, 2010), information

(Pothos, 2010), local transition probabilities (Poletiek &

Wolters, 2009), associative chunk strength (Knowlton &

Squire, 1994), statistical coverage (Poletiek & van Schi-

jndel, 2009), single-letter runs (Redington & Chater, 1996),

and repetition patterns (Lotz & Kinder, 2006).

The work presented here adds local redundancy to the

list. From an empirical standpoint, the addition is useful: a

good predictor is valuable, especially if it can be used to

uncover and resolve potential confounding. However, it is

pertinent to ask why participants judged grammaticality on

the basis of redundancy.

Beginning in the 1950s, researchers used redundancy to

quantify and predict peoples’ perception of figural good-

ness. Garner and Clement (1963), for example, reported a

correlation of 0.85 between the two factors. Work that

followed extended the analysis to show that people also

perceive, remember, classify, and learn redundant patterns

both faster and more easily than non-redundant ones (e.g.,

Clement & Vernadoe, 1967; Garner & Degerman, 1967;

Garner & Whitman, 1965; Jamieson & Mewhort, 2005;

Mewhort, 1972; Miller, 1958; Miller, Bruner & Postman,

1954; Reber, 1967; Royer & Garner, 1966; Schnore &

Partington, 1967; see Chater, 1996, Pothos & Ward, 2000,

and van der Helm & Leeuwenberg, 1996, for revisions).

We argue that participants used pattern goodness as a

proxy for grammaticality. The explanation fits within a

framework of bounded rationality (Simon, 1957) and

heuristic decision (Gigerenzer & Brighton, 2009; Kahne-

man & Tversky, 1974). In particular, it fits with the theory

of attribute substitution (Kahneman & Frederick, 2002).

According to attribute substitution, when people are asked

a hard question, they substitute an easier one. People are

particularly prone to engage in attribute substitution when

(a) the target attribute is inaccessible, (b) an associated

attribute is accessible, and (c) the substitution is applied

without feedback. Of course, the judgement of gram-

maticality task meets all three criteria. When asked to

judge the inaccessible attribute of grammaticality, par-

ticipants substitute the available and intuitive property:

pattern goodness. Because participants receive no feedback

at test, they have no reason to revise or change their de-

cision strategy.

Explaining performance in the standard test

Participants in the standard conditions discriminated

strings by redundancy and grammaticality. One conclusion

is that participants learned some aspect of the grammar.

Another is that participants judged test strings by their

similarity—a factor that we did not control in our materials

but that is also naturally correlated with grammatical re-

dundancy (Jamieson & Mewhort, 2005). To evaluate the

similarity hypothesis, we applied the holographic exemplar

model (HEM) to our materials and procedures.

The HEM is a computational model of memory that

combines the representation scheme from Jones and Me-

whort’s (2007) BEAGLE model of semantic memory with

the account of storage and retrieval from Hintzman’s

(1986) MINERVA 2 model of episodic memory. The

theory explains a number of results from the database on

artificial grammar learning (Chubala & Jamieson, 2013;

Jamieson & Hauri, 2012; Jamieson & Mewhort, 2011) as

well as learning in related tasks: grammatical string com-

pletion (Jamieson & Mewhort, 2010) and serial reaction

time (Jamieson & Mewhort, 2009b).4

In the HEM, a letter is represented as an n-dimensional

vector. The value of each dimension is sampled at random

from a normal distribution with mean zero and variance 1/

n. Letter subsequences (e.g., bigrams and trigrams) are

represented by binding the constituent letter vectors. For

example, the subsequence AB is encoded by binding the

corresponding letter vectors: AB = a � b, where � de-

notes non-commutative circular convolution (see Jamieson

& Mewhort, 2011, pp. 210–212). Letter strings are repre-

sented by summing the subsequences. For example, con-

sider the item ABCD. First, we generate a vector for each

letter: A = a, B = b, C = c, and D = d. Then, we encode

the string by summing all of its subsequences to a single

vector: ABCD = a ? b ? c ? d ? (a � b) ? (b � c) ?

(c � d) ? (a � b � c) ? (b � c � d) ? (a � b � c �
d).

Of course, people do not encode all information in a

string nor do they encode the same information about the

4 Demonstrations of grammatical string completion and serial

reaction time learning are reported using a standard version of the

MINERVA 2 model. However, those demonstrations are reproducible

using the holographic representation scheme in the HEM.
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string on different encounters with it (e.g., Wright &

Whittlesea, 1998). To acknowledge those facts, we en-

coded each string in a simulation as a random sample of

four subsequences ranging from length one to three. Thus,

in our simulations, a string such as ABCD might be rep-

resented as a ? b ? (a � b) ? (b � c � d) in one

simulation but a ? b ? (a � b � c) ? (b � c � d) in

another.

Memory in the HEM is an m by n matrix, M, where m is

the number of independent traces stored in the matrix and

n is the number of features in each trace. Memory storage

is represented by copying each training item to a row in

M. Imperfect encoding is simulated by resetting a pro-

portion of elements in the trace to zero (indicating data

loss). The amount of data loss is controlled by a parameter

L that specifies the probability of storing a feature cor-

rectly; thus, each element in M has a probability 1 - L of

reverting to zero.

Retrieval follows a resonance metaphor. Presenting a

probe vector, p, to memory causes all traces in memory to

activate in parallel. Each trace’s activation is a non-linear

function of its match to the probe. In the model, the acti-

vation of trace i, ai, is computed as,

ai ¼
Pn

j¼1 pj �Mij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 p
2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 M

2
ij

qr

0

B
B
@

1

C
C
A

3

; ð5Þ

where p is the probe, M is the memory, i indexes the

1…m traces in memory, and j indexes the 1…n columns in

the probe and memory matrix. Non-linearity is introduced

in retrieval by raising the similarity metric (the term inside

brackets in Eq. 5) to an odd-numbered exponent. The

transformation ensures that retrieval selects the traces that

match the probe most closely.

The information that is retrieved from memory is a

vector called the echo, c. The echo is a weighted sum of all

traces in memory, where each trace’s contribution to the

sum is weighted in proportion to its activation by the probe.

It is computed as,

cj ¼
Xm

i¼1

ai �Mij for j ¼ 1. . .nf g; ð6Þ

where ai is the activation of trace i, M is the memory,

i indexes the 1…m rows (i.e., traces) in memory, and j in-

dexes the 1…n columns (i.e., stimulus features) in both the

echo and memory matrix.

Judgment of grammaticality is predicted by echo in-

tensity, I, which is computed as

I ¼
Pn

j¼1 pj � cj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1 p
2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 c

2
j

qr ; ð7Þ

where p is the probe, c is the echo, and j indexes the

1…n columns (i.e., stimulus features) in both the probe and

the echo. I ranges between -1 and ?1. The greater the I is,

the higher the rating of grammaticality.

We applied the model to the materials from Experiments

3 and 4. We conducted 100 independent simulations with

the materials from Experiment 3 and 100 independent

simulations with the materials from Experiment 4.

Each simulation had four steps. First, random vectors

were generated to represent the letters in the training and

test sets. Second, a representation was developed for each

training and test item. Third, the representation of each

training string was stored to memory. Fourth, the echo

intensity was computed and recorded for each test string.

The simulation results are presented in Fig. 4. Results of

simulations using the materials from Experiment 3 are

Fig. 4 Mean echo intensity (i.e., global similarity) for test items in the standard test condition in Experiment 3 (left) and Experiment 4 (right).

Predictions are presented as a function of both grammatical status and local redundancy
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shown on the left; results of simulations using the materials

from Experiment 4 are shown on the right.

As shown, the model captures the key features from our

experiments. Firstly, the mean echo intensity for gram-

matical strings is higher than the mean echo intensity for

ungrammatical strings. Secondly, the mean echo intensity

for high-redundancy strings is higher than the mean echo

intensity for low-redundancy strings. Thirdly, there is a

slight advantage in the discrimination of grammaticality in

the results of Experiment 4 relative to Experiment 3. We

conclude that participants’ judgements in the standard

condition in Experiments 3 and 4 are consistent with a

similarity-based decision strategy.

But, the model has no direct appreciation of redundancy

or grammaticality. How, then, did it capture our data? The

model’s success follows from the confounding of gram-

maticality with similarity and of similarity with redun-

dancy. Because of the chain of confounding, responding to

similarity gives an impression that the model is responding

to the other factors as well when, in fact, it is not. The

scenario illustrates a complication with drawing inferences

from theory (as well as from human performance) in ex-

periments with ill-controlled materials. Unless great care is

taken, a model may succeed in predicting peoples’ per-

formance for reasons that the model’s authors do not fully

appreciate.

Statistical coverage

We used Poletiek and van Schijndel’s (2009) formulas to

improve the statistical coverage of the training list.

Although increasing statistical coverage benefitted dis-

crimination of grammaticality in the standard condition, it

did not benefit discrimination in the transfer condition. One

possible conclusion is that statistical coverage is relevant to

an understanding of performance in the standard but not the

transfer test. A second possibility is that statistical coverage

benefitted participants’ discrimination in the transfer test,

but that the benefit was so small that we did not detect it. A

third possibility is that the measure needs revision.

An analysis of statistical coverage suggests that it is

flawed in three ways. Firstly, statistical coverage asserts

that shorter strings provide better statistical coverage than

longer strings. In some cases, the difference can be quite

large: the string BF (SC = 0.0833) provides 36 times

better statistical coverage than BFJBJL (SC = 0.0023),

even though BFJBJL includes the string BF. As Poletiek

and Lai (2012, p. 2053) suggest, ‘‘we do not know, for

example, what the statistical coverage measure corresponds

to from a cognitive point of view. The proportion of the full

output of a grammar displayed in a sample might correlate

with proficiency, but this relation remains to be specified.’’

Secondly, the product rule in the calculation of statistical

coverage asserts that each letter added to a grammatical

string subtracts from rather than adds to its coverage of the

grammar. For example, the string BF provides more sta-

tistical coverage than the string BFJ, even though BFJ

traverses more paths, contacts more nodes in the grammar,

and includes BF. Finally, the product rule also asserts that

every ungrammatical string is equally unrepresentative of

the grammar. But, we suspect that does not hold. For ex-

ample, BJFBJ has a statistical coverage of zero but it is

grammatical right up to the last letter. In contrast, JBLZB

more completely contradicts the grammar. Although we

did not test the idea, we suspect that participants trained on

slightly ungrammatical strings would discriminate gram-

matical from ungrammatical test strings better participants

trained on very ungrammatical strings.

We conclude that statistical coverage is a useful applied

statistic that can be used to analyze materials and predict

performance (e.g., Lai & Poletiek, 2011; Poletiek & Lai,

2012; Poletiek & van Schijndel, 2009; Poletiek & Wolters,

2009; Pothos, 2010). However, the concept should be ex-

amined and the arithmetic refined.

Calculating local redundancy

Previously, we calculated local redundancy using different

formulas (Jamieson & Mewhort, 2005). For example, zero-

order redundancy, L0, was calculated as,

L0 ¼ 1� 1
Q

i2A ki!
; ð8Þ

where A is the set of all possible elements (i.e., letters in the

alphabet) and ki is the number of times that element i ap-

peared in the string. First-order redundancy is calculated by

substituting bigrams for letters as the unit of analysis. Like

the measures used in this paper, L ranges between 0 and 1

with increasing values representing increasing redundancy.

And, in a parallel analysis, we confirmed that our predic-

tions and conclusions were unaffected by the measure we

used. Why, then, did not we use our original formulas?

Pothos (2010) noted that our old measure represents a

special case of the more general formulation for redun-

dancy. More importantly, there were some inconsistencies

in how the concept of an inferred subset maps into the

formulas (see Jamieson & Mewhort, 2005). Given Pothos’

insight and the fact that adopting the standard formulas had

almost no impact on our predictions or outcomes, we

elected to use the general formulas.

The confounding is pervasive

We identified a confounding between redundancy and

grammaticality in our materials. But, is the confounding

active outside of our own experiments?
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A brief inspection of materials from published papers

suggests the problem we have identified is widespread.

Knowlton and Squire (1994) published materials with first-

order redundancy greater than zero for 37.5 % of the

grammatical but only 12.5 % of the ungrammatical test

items. Brooks and Vokey (1991) published materials with

first-order redundancy greater than zero for 43.75 % of the

grammatical but only 25 % of the ungrammatical test

items. Reber and Allen (1978) published materials with

first-order local redundancy greater than zero for 24 % of

grammatical but only 8 % of ungrammatical test items. In

all three examples, discrimination of redundancy would

masquerade as discrimination by grammaticality.

Unfortunately, researchers have re-used the confounded

materials. Knowlton and Squire’s (1994) materials were re-

used by Meulemans and Van der Linden (1997). Brooks

and Vokey’s (1991) materials were re-used by Vokey and

Brooks (1992), Vokey and Higham (2005), Lotz and Kin-

der (2006), Tunney & Shanks, (2003), and Meulemans and

Van der Linden (1997). Reber and Allen’s (1978) materials

were re-used by Dulany, Carlson and Dewey (1984), Alt-

mann, Dienes and Goode (1995), Dienes, Broadbent and

Berry (1991), Dienes (1992), Jamieson and Mewhort

(2010), and Perruchet and Pacteau (1990). In light of the

confounding throughout published work, a re-assessment is

needed to examine the influence it has had on the quality

and precision of published experimental conclusions.

The relation to statistical learning

In a statistical learning experiment, participants listen to a

stream of phonemes ordered according to rules (e.g., ba, di,

ku, pa, da, bu, bi, da, ku…). Following training, they at-

tempt to discriminate grammatical from ungrammatical

subsequences. As in the artificial grammar test, participants

can distinguish valid from invalid subsequences, but they

cannot articulate the grammar. The result has been inter-

preted as evidence of ‘‘…a powerful mechanism for the

computation of statistical properties of the language input’’

(Saffran, Aslin & Newport, 1996, p. 1926).

At first blush, the statistical learning procedure appears

identical to the artificial grammar task—right down to the

conclusion drawn from the results. However, there are

important differences. For example, the artificial grammar

task evaluates peoples’ ability to discriminate gram-

matical from ungrammatical test items based on memory

of studied grammatical exemplars. The statistical learning

task, by contrast, measures peoples’ ability to parse reg-

ular from irregular units within the input stream. Se-

condly, the scope of local redundancy is defined in the

artificial grammar test (i.e., the letter string). In contrast,

the input stream is continuous in statistical learning and,

therefore, local redundancy will depend upon a subjective

decision about where the relevant subsequence begins and

ends.

Although we did not apply the measure to an analysis of

statistical learning, we see no reason that local redundancy

could not also be included as a conceptual and mathema-

tical tool in the analysis of statistical learning. In fact,

Garner (1970, 1974) provides a discussion and map that

could be used to conduct an analysis of redundancy and the

role it plays in the judgement of auditory patterns.

No evidence of successful amateur cryptography

Several participants in our transfer conditions reported a be-

lief that we had mapped letters from the training list to letters

in the test list. Although several tried to guess the mapping,

only a few were successful. Of those who were successful, no

one named more than three of five rewrite rules.

By one analysis, the problem is a serious issue—

knowledge of even a single rewrite rule could tip the scales

to produce discrimination of grammatical from ungram-

matical test strings (Redington & Chater, 1996). However,

it is a practical non-issue in our experiments because par-

ticipants in the transfer conditions did not discriminate test

strings by grammaticality.

Nevertheless, we repeated the transfer conditions from

Experiments 3 and 4 using item-level rather than list wide

rewrite rules (see Vokey & Higham, 2005); a condition that

renders cryptographic discrimination strategies inefficient

or at least unreliable.

Despite the change in materials, performance was

stable: participants discriminated test strings consistent

with redundancy but not grammaticality. The result is en-

tirely anticipated: although item-level rewrite rules might

obscure grammaticality and similarity, they have no in-

fluence on local redundancy and thus no influence on

peoples’ judgements based on local redundancy.

On the relationship between grammatical and local

redundancy

In previous work, we demonstrated that the local redun-

dancy in individual strings is correlated with redundancy of

the underlying grammar (Jamieson & Mewhort, 2005).

Given the confounding, one might be tempted to argue that

the use of redundancy to infer grammaticality represents an

ecologically valid decision strategy (Gigerenzer & Todd,

1999). Although we see nothing wrong with the argument,

the conclusion is complicated by the fact that the training

items in our experiments tended to be low rather than high

redundancy.

One way to test the hypothesis is to present participants

with a training list of low-redundancy grammatical strings

and, then, to present them with low-redundancy
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grammatical test strings versus high-redundancy ungram-

matical test strings. If participants rate high-redundancy

ungrammatical test strings as grammatical and low-redun-

dancy grammatical strings as ungrammatical, their behav-

ior would be consistent with the assumptions about

redundancy and in contradiction to the information about

redundancy in the training list (i.e., the learning

environment).

Regarding inferential limits

Participants in our transfer tests discriminated grammatical

from ungrammatical strings. However, they only succeeded

when grammaticality was confounded with redundancy

(i.e., Experiments 1 and 2). Based on that fact, we sug-

gested that our participants behaved as if they knew the

grammar when, in fact, they did not. However, our data

cannot force that conclusion.

Even in a carefully designed experiment, there is always

a possibility that participants learned the grammar yet

failed to exhibit that learning at test. It is also possible that

measurements are insensitive to learning. It is also possible

that some aspect of the experimental procedure prevented

participants from learning. As long as these possibilities

remain tenable (which they always are), there is no way to

discount the claim that participants can learn the grammar

(even if they do not).

The complication points to a limitation of the traditional

inferential model: one cannot prove a point from a null

difference, even if the null difference appears to be infor-

mative. In future work, we will use methods to develop

evidence for both the null and the alternative hypotheses

(Dienes, 2014; Kruschke, 2011).

Starting small

Lai and Poletiek (2011; Poletiek & Lai, 2012) argue that

artificial grammar learning is a scaffolded process, where

knowledge of basic constraints must be learned first to

support learning of more complex constraints. Their think-

ing echoes that of Elman (1990) as well as Kinder and her

colleagues (see Kinder, 2000; Kinder & Lotz, 2009). Others

have argued a simpler case: that rule induction takes time

(Mathews et al., 1989; Meulemans and van der Linden,

1997).

From that perspective, the evidence that participants’

use pattern goodness to judge grammaticality following a

short training session might be re-cast as evidence for

learning basic elements in the materials (i.e., stimulus cues)

necessary to learn grammatical rules with extended prac-

tice. Although our data provide no concrete empirical in-

sight on the issue, it certainly merits examination in future

work. Can teaching cues correlated with grammaticality

bootstrap learning about untutored and more complex

aspects of grammatical structure? Or, is cue learning in-

dependent from or parallel to a process of implicit rule

induction? Reflecting on the issue, it seems odd that there

are so few examinations of prolonged training in artificial

grammar learning.

In summary

After studying grammatical exemplars, participants can

discriminate novel grammatical from ungrammatical test

strings. Yet, they cannot articulate the grammar. Several

researchers have taken the discrepancy as evidence for

implicit rule induction. Of all the evidence for the rule

induction position, performance in the transfer test is the

strongest. In four experiments, we unconfounded gram-

maticality from redundancy (i.e., pattern goodness). When

the two features were unconfounded, participants failed to

discriminate grammatical from ungrammatical test strings.
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Appendix 1: materials in Experiment 1

Training strings

BFBFFBKK KGDKGDFF CCJHJHFF GDFFBFFB

DKKGKGKG DFBKGDKG JKKGDFFB KGKKGDKK

KKKGDKKG DFFFFBKG HFBKKKKK BFFBFBKG

JKKGDFBK BKKKGDFF BFBKGKKK GDFBFFFB

CCJKGKKG BKGKKGDK DKGKKKKG CCCCJHJH

FFFFBKKG BKKKGKKK CCCJHJKG HFBKGDKK

HFBFFBKK KKGKGDKG CCCCJHJK GDFBKKGK

BFBKKKKK CCJKKGDK HFFFFFFF GKGKKKKG

GDKKGDFB KKGDFFFB DFBKGDKK KGDKKKGK

JHFBFBFB HFBKKKKG DFBFBKGK BKKKGDKK

Test strings

Grammatical

TTTLLLRN TLRTLLLL SLRTLLRT SZTTTLLL

ZTLLRTTL SLLLLLLR LLRNRNZT RNRTTTLL

SLRNRNZT YRNZTTLL YRTTTTTT LLLRNRTT

RNZPNZTL TLLLLLRT NZTLLLRN LLRNRNRN

ZTTLLRTL RTTLRNZT YRNRNRTT SZTTTLLR

Ungrammatical

SZPNRNZP YRSTZYSN TYLLNRYR LPNPPYPP

PRSRNYST NSZPNTPT PZLRZTTY NRZNTYYS

NYNLTSNP ZZYYZZNY SLTSZPRS SLYPLSTZ

ZLRPRRLL YTSTPNRR PRZLSTRR TLNLPTYS

YNZPSRLP PTLTYZYT PRLTPRPS PSZSYYNZ
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Appendix 2: materials in Experiment 2

Appendix 3: materials in Experiment 3

Training strings

BFGCFGKD DGCDGCFD GCDGCFDG HKFDCDGK

BKDGKFGK DGCFDGKD GKDCDCFD HKFDGKFD

CDCFDGCD DGCFGKFG GKDCDGCF HKFGCDCF

CDCFGKDG FDCFDCDC GKDCDGKD KFDGCFDG

CFDCDGCF FDCFGCDC GKDCFDGC KFDGKFGK

CFGKDGCF FGCDGKDC GKFDGCDC KFGCDGKD

DCDCDGCF FGCDGKDG GKFGKFDG NCDCDGCD

DCDCFGKD FGKFDGCF HDCDCFDG NCDCFGCF

DCDGCDCD FGKFGCDC HDCFDGKF NCDCFGKD

DCFGCDGC GCDGCDGK HKDCFGKF NGKFDGKD

Test strings

Grammatical

JXRXSPSP LPSPSTRX JXSPSTXS PJTRWLJT

JXRXSTXR RWJXSTXS SPSTRWLP SPJTXSTX

LPSTXRWL STRWJXST STRWJXST TRXRWLJX

PSPSTRXS WLJTXRWL XRXSPSPJ RWLPSPJX

STRXRXRW XSPSTRXS LPJXRWJT LJTXRWJT

Ungrammatical

TLRJTSRJ RXTJWJRL WLPRPXWS JRLXWSXS

XLPWXJXR XPWRSJSP XJXJWXTX PJTXSJXP

WSTLJLRP PRLPJPWL XSRXLRXJ RSRSRJLP

SPXWJPXW WPRSJWXL PWPWPTXW JWRPTXTR

SPSXLPLS TWSPSRSR XWLSTSXJ RWJXLWXS

Training strings

Standard condition

ZLBF ZLBFJBJF BJFJZ BFJBF ZLBFJBFL ZFJBFJZ

ZLBJL BFJBJL ZFJBF ZLBJLBF ZLBJLBFL BJLBJLBF

BJLBFJZ ZLBJLZ ZFJBJL ZLBJLBFJ BJLBJFJZ ZLBJLBJL

ZLBFJBJL ZFJBFL BFJBJF BJFJBJLZ BJFJBFJZ BFJBFJBF

BFJBJFL BFJBJLZ ZFJBFJ BFJBJLBF BJLBJL BJFJBJFJ

Transfer condition

DMXQ DMXQHXHQ XHQHD XQHXQ DMXQHXQM DQHXQHD

DMXHM XQHXHM DQHXQ DMXHMXQ DMXHMXQM XHMXHMXQ

XHMXQHD DMXHMD DQHXHM DMXHMXQH XHMXHQHD DMXHMXHM

DMXQHXHM DQHXQM XQHXHQ XHQHXHMD XHQHXQHD XQHXQHXQ

XQHXHQM XQHXHMD DQHXQH XQHXHMXQ XHMXHM XHQHXHQH

Test strings

Grammatical

Low Medium High

BJLZ BFJBFL BJLBJLZ
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Appendix 4: materials in Experiment 4

ZLBJF BJLBJF ZLBJLBJF

ZLBFL ZLBFJBF BFJBFJ

ZFJBJLZ BJLBJFL ZLBFJBFJ

BJLBFL ZFJBJFJ BFJBFJZ

ZFJBJLBF BJLBJFJ BJFJBJF

BJFJBFL BJFJBFJ BJFJBJFL

BJFJBF ZFJBJFJZ ZFJBFJBF

Ungrammatical

Low Medium High

JLBZ BFLBFJ BJLZBJL

BJFLZ LBJFBJ ZFLBJLBJ

ZBLFL ZBFLJBF JBFJBF

ZJBLJFZ BJFLBJL BFJLZBFJ

JBLFLB BFJZJFJ ZBFJBFJ

FBLJBJFZ FLBJFBJ FJBJFJB

BLFJFBJ FJBFJBJ JBJFLBJF

JFBFJB ZBFJZJFJ FBJFZBJF

Training strings

Standard condition

BJFL ZLBJLBFJ BFJBFJBF BFJBJFJZ ZLBFJ ZLBJLBJL

ZFJBFJZ ZLBFJBJF BFJBF BJFJBJFJ BJFJBJL ZFJBJL

ZLBF BJFJ ZLBJFL BFJBJFJ ZFJZ ZLBJFJZ

ZLBJL ZFJBFJ BJLBF BJFJBJLZ ZLBJFJBF BFJZ

BFJBJL ZLBFJBFL ZLBFJZ BJFJZ BJLBFJ BFJBJLZ

Transfer condition

XHQM DMXHMXQH XQHXQHXQ XQHXHQHD DMXQH DMXHMXHM

DQHXQHD DMXQHXHQ XQHXQ XHQHXHQH XHQHXHM DQHXHM

DMXQ XHQH DMXHQM XQHXHQH DQHD DMXHQHD

DMXHM DQHXQH XHMXQ XHQHXHMD DMXHQHXQ XQHD

XQHXHM DMXQHXQM DMXQHD XHQHD XHMXQH XQHXHMD

Test strings

Grammatical

Low Medium High

BJLZ BFJBFL BJLBJLZ

ZLBJF BJLBJF ZLBJLBJF

ZLBFL ZLBFJBF BFJBFJ

ZFJBJLZ BJLBJFL ZLBFJBFJ

BJLBFL ZFJBJFJ BFJBFJZ

ZFJBJLBF BJLBJFJ BJFJBJF

BJFJBFL BJFJBFJ BJFJBJFL

BJFJBF ZFJBJFJZ ZFJBFJBF

Ungrammatical

Low Medium High

JLBZ BFLBFJ BJLZBJL

BJFLZ LBJFBJ ZFLBJLBJ
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