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Abstract It has recently been proposed that the fea-
ture values (e.g., pitch, duration, etc.) of tones are
processed in separate perceptual channels and are later
reintegrated to form the experience of a unitary per-
cept. Patterns of errors in recognizing combinations of
auditory features have been taken as failures of, and
thus evidence for, an auditory feature-integration
process. We outline an alternative interpretation of
these effects based on similarity structure of the stimuli.

When observers are presented with several visual
objects, but are required to attend to another position
in space, they may report the features from the objects
in mismatched combinations. For example, when pre-
sented with a red square and a blue circle, observers
may report having seen a red circle, an #llusory con-
Junction obtained by mismatching colour with shape
(Treisman, 1986; Treisman & Gelade, 1980; Treisman &
Paterson, 1984; Treisman & Schmidt, 1982).

Ilusory conjunctions can be explained in terms of
feature-integration theory. According to feature-inte-
gration theory, primitive attributes of stimuli, called fea-
tures, are extracted preattentively and are later reinte-
grated, or bound, to form a unitary percept. The bind-
ing process is thought to be error prone, particularly
when attention is taxed.

Feature-integration theory has been developed in
studies of visual perception (e.g., Treisman, 1986;
Treisman & Gelade, 1980; Treisman & Schmidt, 1982).
However, the theory has also been applied to auditory
perception (Deutsch, 1986; Hall, Pastore, Acker, &
Huang, 2000; Thompson, 1994; Thompson, Hall, &
Pressing, 2001; Thompson & Sinclair, 1993). Thompson
(1994), for example, presented two repeating sequen-
tial tones that differed in pitch and duration. Listeners
were required to detect changes to the pattern.
Changes included (1) a new pitch or duration, a single

change, (2) a new pitch and a new duration, a double
change, and (3) a re-combination of the pitch from one
tone with the duration of the other, a switch change.
Single and double changes were easier to detect than
switch changes, and detection of switch changes wors-
ened when listeners were distracted.

Feature-integration theory instructs that detection of
single and double changes requires only accurate fea-
ture registration whereas detection of switch changes
requires both accurate feature registration and accurate
feature binding. Thus, feature-integration theory
explains the extra difficulty in identifying switched fea-
tures as failures of feature binding. The explanation
carries feature-integration theory over from vision to
audition.

A second class of evidence for auditory feature-inte-
gration theory comes from paired-feature auditory
recognition-memory studies (Thompson et al., 2001). In
Thompson et al.’s experiments, listeners studied sets of
sequentially presented tones that varied on two stimu-
lus attributes: pitch and duration. Each list was fol-
lowed by a probe stimulus and listeners were required
to indicate whether or not the probe matched a tone in
the studied set. A match response to a positive probe
(an item from the list) was a hit, and a match response
to a negative probe (an item not in the list) was a false
alarm.

Negative probes differed from the study tones in
one of four ways: 1) One kind of probe combined the
pitch from one tone with the duration from another, a
switch change; 2) A second kind combined the pitch
from one tone with an unstudied duration, a single-1
change; 3) The third kind combined the duration from
one tone with an unstudied pitch, a single-2 change;
and 4) The fourth combined an unstudied pitch with
an unstudied duration, a double change.

Thompson et al. (2001) reported more match
responses for switch probes than for the other three
kinds of negative probes. Of particular significance,
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there were more match responses for switch probes
than for single probes and the match response rate for
switch probes was close to that for positive probes.
Thompson et al. used a multinomial model and the
error rates for the five kinds of probes to estimate the
probabilities of misperceiving simple features and to
estimate the probability of illusory conjunction errors.
Based on their analysis they suggested that the pattern
of match response rates for the five conditions indicates
that features were weakly or improperly integrated at
the perceptual stage at which pitch and duration are
initially conjoined. In a second experiment, Thompson
et al. repeated pitches and durations across seven tones
of a study set. The results were consistent with the first
experiment and with the interpretation based on fea-
ture-integration theory.

Insensitivity to combinations of musical parameters
is relevant to issues in music cognition and auditory
perception. It likely influences music experience and,
for that reason, has implications for music composition,
for the perception of musical structure, and for the per-
ception of musical similarity. The results are also
important as evidence for auditory illusory conjunctions
because they extend feature-integration theory’s appli-
cation from the visual-spatial domain to the auditory-
temporal domain. Finally, because illusory conjunctions
occured when tones were presented sequentially, and
because feature-integration theory specifies that an illu-
sory conjunction requires the concurrent availability of
features from studied stimuli so they can be incorrectly
bound, Thompson et al.’s (2001) results point to the
importance of a mechanism that maintains features of a
tone as free-floating perceptual units both over time
and prior to binding.

In this report, we suggest an alternative interpreta-
tion of Thompson et al’s (2001) experiments based on
the role of similarity structure in their experiments. To
outline the approach, consider a simple count of the
features shared by a study set and a probe in
Thompson et al.’s experiments. Positive probes shared
both pitch and duration with a studied item. The pitch
and duration of a switch negative probe shared corre-
sponding features in the study set, but their conjunc-
tion did not. The pitch of a single-1 probe shared a
pitch from the study set, but its duration did not. The
duration of a single-2 probe shared a duration in the
study set but its pitch did not. There were no features
shared between a double probe and items in the study
set. Because similarity facilitates the recognition of a
positive probe and hinders the rejection of a negative
probe, the similarity structures in the experiments antic-
ipate the pattern of results predicted from feature-inte-
gration theory: p(Match | Positive) > p(Match | Switch)
> p(Match | Single) > p(Match | Double).
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Global recognition-memory theory (Clark &
Gronlund, 1996; Humphreys, Pike, Bain, & Tehan,
1989) bases predictions about recognition performance
on the degree of similarity between a probe and stud-
ied items. We demonstrate that similarity structure pre-
dicts the rank order of results observed by Thompson
et al. (2001), and apply a contemporary global recogni-
tion-memory model, REM (Shiffrin & Steyvers, 1997), to
formalize the argument.

Simulations Based on Similarity Structure

Global recognition-memory theory postulates that stud-
ied items are stored in memory and that each
encounter with an item is stored as a separate trace.
During recognition, the probe accesses the traces of all
studied items in parallel. Each trace activates according
to its similarity with the probe, and the summed activa-
tion across traces indexes the likelihood that the probe
will be recognized (Clark & Gronlund, 1996;
Humphreys, Pike, Bain, & Tehan, 1989). The more sim-
ilar the probe is to studied items, the more likely that a
match response is given.

Global recognition-memory theory expresses the
probability of a match response as a function of the
similarity between a probe and studied items
(Humphreys et al., 1989). Similarity takes a value, 12, if
a probe and a study item have two features in com-
mon, a second value, 71, if they have one feature in
common, and a third value, 10, if they have no features
in common. The probabilities of a match response for
each kind of probe that Thompson et al. (2001) used in
their tasks can be written as a linear combination of 12,
11, and 10 — where 12 > 11 > 10 and N is the number of
items in the study set:

pMatch | Positive) = 12 + (W - 1) 10

pWMatch | Switch) = 2 11 + (W - 2) 10

pWatch | Single) =11 + (W- 1) 10

pWMatch | Double) = N 10

As shown in Humphreys et al.’s (1989) equations
above, similarity structure anticipates that switch
probes are more likely to elicit a match response than
single probes on the basis of similarity, and indepen-
dent of the opportunity for feature migration.
Recognition memory has given rise to several formal
models, including REM (Shiffrin & Steyvers, 1997),
Minerva2 (Hintzman, 1984, 1986, 1988), TODAM
(Murdock, 1982, 1983), CHARM (Eich, 1982), and SAM
(Raaijmakers & Shiffrin, 1981). The models are referred
to collectively as global matching recognition-memory
models.

REM (Shiffrin & Steyvers, 1997) is a contemporary
global recognition-memory model that calculates simi-
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larity between the probe and memory using a Bayesian
log odds ratio — the likelihood of an observed match to
memory given either a target or a foil. Mean familiarity
across all traces in memory indexes the likelihood that
a match response is elicited. We applied REM to the
paired-feature recognition tasks used by Thompson et
al. (200D).

Simulations With REM

Stimuli were represented at two levels: Features (i.e.,
pitch and duration values) and tones (i.e., combina-
tions of pitch and duration). Feature vectors of 10 ele-
ments represented pitch and duration values. Each vec-
tor element was assigned a randomly sampled value
from a geometric distribution, with the p(success) = g.
Tone vectors were created by concatenating two fea-
ture vectors: The first 10 elements represented the
tone’s pitch, the second 10 elements represented its
duration, and the pairing represented the conjunction
of features.

Recognition probes were represented as tone vec-
tors. Positive probes were copies of studied tones. For
switch probes, the first 10 elements from one study
tone were concatenated with the second 10 elements
of another (i.e., the pitch value from one tone with the
duration value from another). For single-1 probes, the
first 10 elements from one study tone (i.e., the pitch
feature) were concatenated with a new feature vector.
For single-2 probes, a new feature vector was concate-
nated with the second 10 elements (i.e., the duration
feature) of a study tone. For double probes, two new
feature vectors were generated and concatenated.

For each simulated trial, the program generated a set
of study items and a corresponding set of recognition
probes (a match, a switch, a single-1, a single-2, and a
double probe). The study-items were encoded into a
memory matrix. Encoding involved three parameters: 1)
the number of opportunities to encode each element, R;
2) the probability that an element is noticed, ©#* and 3)
the probability that a noticed feature is encoded correct-
ly, ¢. A noticed and correctly copied element took its
value from the corresponding stimulus representation. A
noticed, but incorrectly copied element, took a new,
random value. Once an element was noticed and
encoded, it was not overwritten. Elements that went
unnoticed during encoding were assigned a value of
zero. Feature conjunctions in the study tones were pre-
served in memory, blocking feature migration. For all
our simulations, R was set to 1 and u«* was set to .5.

After the study tones were encoded, similarity for
each kind of probe was calculated against tones in the
memory matrix as a Bayesian odds ratio (Shiffrin &
Steyvers, 1997, p. 147),
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Figure 1. Mean proportions of match responses for each kind of
recognition probe. Error bars represent standard errors. The top
panel shows the actual and simulated data for Experiment 1, and
the bottom panel shows the actual and simulated data for
Experiment 2.
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where A, is an index of similarity between the probe
and a study tone f, n,, is the number of mismatching
nonzero values between the probe and the study tone,
and 4, is the number of matching nonzero values
between the probe and the study tone that have value
i

Mean familiarity for the probe, F,, was calculated by
taking the log( value of the average A, value across all
N probe-study tone comparisons,

N
F,=log,| 34 /N
t=1

A match response was counted when familiarity was
equal to or greater than a decision criterion, k. The
logyp of mean similarity is used because similarity val-
ues, A, are highly skewed. By taking the log;, of simi-
larity, values retain their differences but are spread on
a more intuitively meaningful scale.
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Simulations for Experiment 1

In Thompson et al’s (2001) first experiment, listeners
studied sets of two tones that differed in both pitch and
duration and were required to judge whether or not a
probe was in the studied set.

Each simulation comprised 320 recognition trials —
equivalent to the number of trials contributed by the 20
participants in Thompson et al.’s experiment. For each
trial, the program generated a set of two stimulus-items
and five recognition probes, encoded the stimulus-
items, and calculated the familiarity for each probe
against the encoded items. When familiarity exceeded a
decision criterion, k, a match response was recorded.
Proportions of match responses were scored by divid-
ing the number of match responses for each kind of
probe by the number of simulated trials. Because sim-
ulations had the same number of trials as the experi-
ment, standard errors reported for the five means are
comparable to those reported by Thompson et al.

Predicted values are means taken from 10 simula-
tions, each comprising 320 recognition trials. A down-
hill Simplex algorithm was used to search the three-
dimensional free-parameter space that includes ¢, &,
and g (see Press, Teukolsky, Vetterling, & Flannery,
1992, pp. 402-406). Predicted and actual proportions
of match responses are reported in the upper panel of
Figure 1 as a function of correct encoding, ¢ = 0.72, the
decision criterion, & = 0.14, and the shape of the geo-
metric distribution that items were sampled from, g =
0.87.

Predictions matched the rank order of match
response rates predicted from feature-integration theo-
ry: p(Match | Positive) > p(Match | Switch) > p(Match
| Single) > p(Match | Double), RMS = .021. The higher
match response rate for switch probes compared to sin-
gle probes, which has been taken to imply feature
migration, falls out from the similarity structure of the
experiment.

Other global recognition-memory models, like
Minerva2 (Hintzman, 1984, 1986, 1988) and TODAM
(Murdock, 1982, 1983), yield the same outcomes as
REM (Shiffrin & Steyvers, 1997). The shared ability to
predict the pattern of match responses emerges
because global recognition-memory models base recog-
nition predictions on the similarity between a probe
and a set of studied items.

Simulations for Experiment 2

In Thompson et al.’s (2001) second experiment, study
sets comprised seven tones made from combinations of
two durations and six pitches. The first and last tones
in a sequence were identical. Tones in positions 2
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through 5 of a sequence each had a different pitch.
Two of those tones shared one duration and the
remaining three tones shared another duration (see
p. 132, Thompson et al.).

Studied tones were represented as vectors compris-
ing two 10-element fields, one representing pitch and
the other duration, with concatenation representing
feature pairings. Negative probes were constructed by
adding unstudied fields and rearranging studied fields
as required. In our simulations, positive probes were
copies of a study tone comprising the less frequent
duration. Switch probes comprised a studied pitch mis-
matched with the less frequent duration. Single-1
probes comprised the pitch from one study tone paired
with a new duration. Single-2 probes comprised a new
pitch paired with the less frequent duration. Double
probes comprised an unstudied pitch value and an
unstudied duration value.

Each simulation comprised 288 recognition trials —
equivalent to the number of trials contributed by the 18
participants in Thompson et al.’s (2001) experiment.
On each trial, the program generated a study set and a
corresponding probe set. The study set was encoded
and each kind of probe was compared against it.
Familiarity was calculated for each probe. When mean
familiarity across the seven traces was equal to or
greater than a decision criterion, &, a match response
was counted. Proportions of match responses were
scored by dividing the number of match responses for
each kind of probe by the number of simulated trials.
Because simulations had the same number of trials as
the experiment, standard errors reported for the five
means are comparable to those reported by Thompson
et al.

Predicted values are means taken from 10 simula-
tions, each comprising 288 recognition trials. Predicted
and actual match response rates are reported in the
lower panel of Figure 1. We re-used the fitted parame-
ters from the first simulation: ¢ = 0.72, k= 0.17, and g =
0.87.

Using the same parameter values from the first simu-
lation, the results matched the rank order of match
response rates predicted by feature-integration theory:
pWMatch | Positive) > p(Match | Switch) > p(Match |
Single) > p(Match | Double), rRMS = .037. The higher
match response rate for switch probes compared to sin-
gle probes, which appears to imply feature migration,
falls out from the similarity structure of the experiment.

Conclusion
Thompson et al. (2001) used a recognition-memory

task to argue for feature migration in the auditory
domain. We have outlined an alternative explanation
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based on similarity structure formalized using current
theory from the recognition-memory literature. Our
work shows that similarity structure produces the pat-
tern of match responses previously attributed to feature
migration.

Our analysis of the role of similarity exploits a
model for recognition-memory, and we have restricted
our conclusions to tasks that contain a prima-facie
memory component. Other examinations of auditory
feature migration have minimized the role of memory
(e.g., Hall et al., 2000; Thompson, 1994). However,
even in tasks that minimize the role of memory, simi-
larity relations between a probe and a stimulus-array
remain a potential influence on performance.
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Sommaire

Les travaux de recherche actuels se servent du modele
d’erreurs pour considérer comme des échecs du
processus auditif d’intégration des caractéristiques, les
combinaisons de caractéristiques auditives et, par le fait
méme, pour expliquer ce processus. Nous proposons
une autre interprétation possible de ces effets, qui
repose sur les relations de similarité qui existent entre
la sonde et l'ensemble de stimuli a laquelle elle est
comparée.

Par exemple, dans les expériences menées par
Thompson, Hall et Pressing (2001), les auditeurs ont
étudié des ensembles de signaux sonores dont deux
des attributs de stimulus variaient : la hauteur tonale et
la durée. La présentation de I'ensemble de stimuli était
suivie par un stimulus-sonde et les auditeurs devaient
indiquer si la sonde se retrouvait dans 'ensemble de
stimuli. Une sonde positive avait, avec I'ensemble des
stimuli, trois caractéristiques communes : la hauteur
tonale, la durée et la présence conjuguée de la hauteur
tonale et de la durée. La hauteur tonale et la durée
d’'une sonde négative sélectionnable concordaient avec
les caractéristiques présentées dans 'ensemble de stim-
uli, a l'inverse de la présence conjuguée de la hauteur
tonale et de la durée. Une caractéristique de la sonde
présentant un seul attribut (soit la hauteur tonale, soit
la durée) concordait avec une caractéristique présentée
dans I'ensemble de stimuli, tandis que pour l'autre ca-
ractéristique, cet effet n’était pas observé. On n’a
observé aucune caractéristique commune entre la

sonde qui présentait deux attributs et 'ensemble de
stimuli.

Parce que la similarité facilite la reconnaissance
d’'une sonde positive et empéche le rejet dune sonde
négative, les structures de similarité des expériences
permettent de prévoir le modele de résultats prédit par
la théorie de l'intégration des caractéristiques : p(corre-
spondance positive) > p(correspondance | permuta-
tion) > p(correspondance | simple) > p(correspon-
dance | double). Nous avons étayé notre hypothese en
appliquant le modele REM (Shiffrin et Steyvers, 1997),
un modele général de la mémoire de reconnaissance
utilisé actuellement, aux taches de Thompson et de ses
collaborateurs. Nos simulations ont démontré que la
performance de reconnaissance, comme la théorie de
l'intégration des caractéristiques nous permettait de le
prédire, découle des relations de similarité qui existent
entre la sonde et I'ensemble de stimuli 2 laquelle elle
appartient.

Il reste néanmoins a déterminer jusqu'oll nos obser-
vations peuvent s’appliquer a d’autres travaux de
recherche sur lintégration des caractéristiques dans le
domaine de la recherche auditive (p. ex., Hall, Pastore,
Acker et Huang, 2000). Toutefois, il semble évident,
que, au moment d’élaborer le plan d’'une expérience
destinée a examiner le processus d’intégration des ca-
ractéristiques, les chercheurs doivent prendre en
compte les relations de similarités qui relient une
sonde et la série de stimuli a laquelle on la compare.

Revue canadienne de psychologie expérimentale, 2003, 57:2, 130



