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A classic goal in cognitive modelling is the integration of process and representation to form complete
theories of human cognition (Estes, 1955). This goal is best encapsulated by the seminal work of Simon
(1969) who proposed the parable of the ant to describe the importance of understanding the environment that
a person is embedded within when constructing theories of cognition. However, typical assumptions in
accounting for the role of representation in computational cognitive models do not accurately represent the
contents of memory (Johns & Jones, 2010). Recent developments in machine learning and big data
approaches to cognition, referred to as scaled cognitive modelling here, offer a potential solution to the
integration of process and representation. This article will review standard practices and assumptions that
take place in cognitive modelling, how new big data and machine learning approaches modify these
practices, and the directions that future research should take. The goal of the article is to ground big data and
machine learning approaches that are emerging in the cognitive sciences within classic cognitive theoretical
principles to provide a constructive pathway towards the integration of cognitive theory with advanced
computational methodology.

Public Significance Statement
Computational modelling has played a central role in the development of theory in cognitive
psychology. Recently, machine learning and big data approaches to understanding cognition have
become increasingly popular. This article reviews standard approaches in computational cognitive
modelling and specifies how new advanced computational approaches can be used to generate new
research pathways in the cognitive sciences.
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Two principal strategies have been used to build knowledge into
computational systems. The first is to program sophistication into
the system itself so that its behaviour reflects built-in (i.e., innate)
knowledge, such as early work in models of semantic memory in
psychology (e.g., Collins & Quillian, 1969). Examples of that
approach include expert systems in artificial intelligence research
(Jackson, 1986). The other strategy is to provide the system with
a sufficient store of data in a relevant domain so that sufficient

representations for the problem can be learned by the system.
Examples of that approach include modern machine learning
(e.g., LeCun et al., 2015). Although both approaches can solve
similar problems, they nevertheless represent very different philos-
ophies about the nature of knowledge and intelligence when con-
sidered as models of human cognition.

By embedding a model with hand-coded knowledge, the system
is prepared for the world in which it lives and survives by that
“intelligent design.” That is, a system of this type’s ability to behave
within the environment that it is embedded in is dictated by its
programming, often informed by domain expertise from human
experts. For example, an automated robot in a car manufacturing
factory only needs to know how to correctly weld, paint, or
assemble. For these types of applications, there is no need for these
systems to adapt. Instead, the emphasis is placed on optimizing the
system’s behaviour to perform a specific and anticipated task as
perfectly as possible.

In contrast, machine learning approaches to cognition and soft-
ware development acknowledge the noise and uncertainty of the
world. In many cases, it is impossible to forecast all possibilities and
contingencies that a system will face when inserted into the real
world. For example, in automated speech or handwriting recognition,
there is significant variability in the information that the systems will
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encounter (Goldinger, 1998). Thus, instead of building in abstracted
knowledge about the structural properties of a language (e.g.,
phonemes and graphemes), machine learning approaches train mod-
els on noisy, varied, and diverse information sources in the hope that
the system can outmanoeuvre all of the unforeseen circumstances
and variations that it might come across when applied to real input
(e.g., thousands or millions of samples of written and spoken
language; Graves et al., 2013; Graves & Schmidhuber, 2008).
Similar arguments have occupied debates about the nature of

knowledge across the history of the philosophy of mind, psychol-
ogy, and linguistics (e.g., Chomsky, 1991; Jackendoff, 1992;
Pinker, 1994; Quine, 1960). In those circumstances, the division
is framed in terms of nature versus nurture; a debate still alive in both
the psychological and biological sciences (e.g., Gould, 1996;
Herrnstein & Murray, 2010). Indeed, such arguments are now
taking place in the cognitive sciences in response to the development
of machine learning approaches to cognition (e.g., Günther et al.,
2019; Johns, 2022a; Kumar, 2021; Landauer & Dumais, 1997;
Thompson et al., 2020). With the entry of computational modelling
to that debate, we see real opportunity to advance our understanding
of and even potentially resolve these issues.
In this article, we make the case that nature might play a role in

setting the conditions and parameters of cognition, but that nurture
and learning play a dominant role in how behaviour emerges against
the often unpleasant but necessary motivations of living. More
critically, it will be pointed out that the toy examples of cognitive
behaviour and learning that have been and generally continue to be
explored in the psychological laboratory have, in combination with
the advent of our digital lives in the 21st century, put cognitive
researchers in a watershedmoment. Indeed, it is now possible to take
the careful lessons learned from laboratory science, and the precise
cognitive models derived from it, into the broader and scaled-up
world of cultural knowledge. Doing so will bring psychology out of
the laboratory and deliver on the promise from long ago to situate
psychology in a primary place amongst the biological and informa-
tion sciences (see Hebb, 1958; Mewhort, 1990).
Hebb (1958) discussed the proper role of psychology. He likened

psychology to Alice in Wonderland and how our discipline needed
to find its place in the biological sciences. That treatise led to the
modern shape of psychology, particularly the influence of cognitive
neuroscience in modern psychological science. Mewhort (1990),
an intellectual grandchild of Hebb’s, built on Hebb’s arguments to
discuss psychology’s place in the information sciences and pro-
posed that psychologists had an important role to play in the design
and implementation of artificial intelligence and what has become
known as cognitive computing, machine learning, and data science.
Mewhort discussed how artificial neural networks at the time
provided excellent accounts of local laboratory tasks (e.g., the
interactive activation model for understanding the word superiority
effect; McClelland & Rumelhart, 1981), but that those systems did
not scale up to explain behaviour beyond the contrived laboratory
examples on which they were developed (Feldman-Stewart &
Mewhort, 1994). Yet, he expressed a belief that the limitation
reflected the failure of psychologists to think at the scales of the
problems they wanted to solve. Accordingly, he encouraged the
discipline to think about “psychology at scale” so as to bring
psychologist’s unique perspectives and contributions to bear on
the goals of technological invention and innovation.

The motivations of accounting for behaviour at scale have a rich
history in the cognitive sciences. Indeed, such notions were at the
heart of Simon’s (1969) vision for the future of the discipline. To
underscore the importance of environmental structure on intelli-
gence and behaviour, Simon proposed the parable of the ant. In this
parable, he describes the types of theories that one may entertain
about an ant’s behaviour when observing it walking along a beach. If
one only considers the ant’s path, without also considering the
environment in which that path lay, one might ascribe the ant’s
meandering path to a complex internal mechanism. However, if one
also considers the environmental obstacles in the ant’s way (i.e., a
branch here and a stone there), one would realize that the ant was
using simple internal mechanisms in reaction to a complex environ-
ment (i.e., turn left at the branch and right at the stone in order to go
in a straight line). That is, from Simon’s point of view, constructing
a complete theory of behaviour and cognition requires an awareness
and integration of the tasks at hand, the organism faced with the task,
and the environment in which the task must be accomplished.

Models of cognition have both processing and representation
assumptions, with both aspects of a model being interdependent
(Kanerva, 2009). For example, if one wanted to construct a model
of episodic memory, one would need to specify exactly what is
contained in an episodic memory trace and also the process by
which those traces are retrieved from memory. However, this
interdependency has been ignored in the implementations of
most cognitive models. In particular, the majority of cognitive
models of episodic memory have utilized randomized representa-
tions or artificially constructed representations of memory content,
especially when that content refers to semantic information (Johns &
Jones, 2010). That is, most cognitive models have assumed away
variance in the representations learned from the environment, in
order to focus on determining the underlying processing mechan-
isms of cognition. While important and fundamental information
about memory processes has been attained using this strategy, for
cognitive models to increase in plausibility and power, it is neces-
sary to also consider the content that is contained in the representa-
tions of memory and language.

People learn from experience within the environments that they
occupy and are embedded in, from the social to the perceptual to the
linguistic (Tiv et al., 2022). This presents a challenge to cognitive
models seeking to integrate scaled and realistic representational
assumptions into their architecture. However, the rise of big data
sources and corresponding machine learning algorithms that can
learn from these sources has allowed for remarkable recent progress.
In the cognitive sciences, the area of study where the impact of big
data and machine learning has been most pronounced is the study of
lexical semantics (see Günther et al., 2019; Kumar, 2021, for recent
reviews), beginning with the classic latent semantic analysis (LSA)
model of Landauer and Dumais (1997).

The work of Landauer and Dumais (1997) was prompted by a
central problem in the philosophy of mind, dating back to Plato,
about whether knowledge acquisition is based upon innate con-
straints or from statistical learning of environmental structure (to put
it into modern terms). LSA demonstrated that a relatively simple
learning mechanism, based upon techniques derived in the field of
information retrieval in databases (Deerwester et al., 1990), and
trained with a sufficient amount of natural language, can provide
impressive fits to tests of human semantic knowledge (e.g., it
performed at about the same level as an English a second language
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user on a synonym test). This result has prompted a broad range of
model development exploring different mechanisms to extract seman-
tic representations from large collections of text (e.g., Griffiths et al.,
2007; Jamieson et al., 2018; Jones & Mewhort, 2007; Landauer &
Dumais, 1997; Mikolov et al., 2013).
An even earlier example of the importance of big data in the

psychological and cognitive sciences is given by the extraction of
word frequency values by Kucera and Francis (1967). These values
were collected by measuring the frequency of words from a sample
of approximately 1 million words from a corpus assembled from a
variety of sources, such as newspaper articles and fiction novels.
Assembling these values was prompted by early results in experi-
mental psycholinguistics demonstrating that words that appeared
more often were processed faster (e.g, Broadbent, 1967). Subse-
quently, word frequency has been established as a central method-
ological and theoretical concept in the study of lexical organization
(see Brysbaert et al., 2018, for a review).
Kučera and Francis (1967) faced significant challenges assem-

bling their materials given the technological limitations of the
time, which explains the longevity of the impact of these norms
(Brysbaert & New, 2009). Modern researchers do not face these
same limitations. Recently, there have been a number of additional
word frequency sets from a diverse number of sources that have
been collected and disseminated, such as television and movie
subtitles (Brysbaert & New, 2009), newspaper articles (Davies,
2009), online encyclopaedias (Shaoul & Westbury, 2010), fiction
books (Johns, Dye, et al., 2020; Johns & Jamieson, 2019), social
media (Herdağdelen & Marelli, 2017), and online forums (Johns,
2019, 2021a). This increase in types of lexical materials tracks
cultural developments in the use of language across different
technological mediums. These examples demonstrate the initial
promise of using new technological developments in the computa-
tional sciences to drive developments in the psychological and
cognitive sciences. However, for these collections of texts to be
useful in the development of cognitive theory, they also need to be
used by cognitive models, a significant challenge. However, before
discussing this possibility, the interdependency of representation
and process in cognition will be explored.

Processing and Representation in Cognitive Modelling

To illustrate the importance of both representation and processing
assumptions in the development of cognitive theory, consider the
following scenario: a student’s advisor tells them that “you want to
be where the science will be, not where it is.” The student appreci-
ates this advice, but they have a nagging feeling that they had heard
something similar before. While searching the internet to determine
the cause of their feeling of familiarity, the student realized that
it was based on a famous quote from the hockey player Wayne
Gretzky, who stated that “I skate to where the puck is going to be,
not to where it has been.”
The student’s ability to identify that their advisor’s advice was

similar to a previously heard quote is dependent on two main
components of memory and language. First, it is necessary to
have a comparative process where the structure of the current
episodic experience is compared against past experiences (i.e.,
retrieval). Second, there needs to be an underlying representation
of the meaning and not just the specific words of those experiences
so that the process can determine the similarity of the present context

to past experience (i.e., knowledge). That is, both a processing
mechanism and a representation type need to be proposed in order
to successfully account for student’s recognition memory performance.

A standard example of a cognitive model with well-defined
processing and representation assumptions is given with the classic
MINERVA 2 model of Hintzman (1986, 1988). MINERVA 2 is a
multitrace memory model, employed to explain a variety of phe-
nomena across memory and language since its inception (e.g., Arndt
& Hirshman, 1998; Chubala et al., 2016; Goldinger, 1998; Jamieson
et al., 2012; Jamieson & Mewhort, 2009, 2010, 2011; Johns,
Jamieson, et al., 2020; Johns & Jones, 2012, 2015; Kwantes,
2005; Thiessen & Pavlik, 2013; see Jamieson et al., 2022, for a
recent review). In this model, each stimulus that a model encounters
is stored as a separate trace in memory. For example, when
MINERVA 2 is applied to understand list memory performance,
the representation of each word contained in a list is stored in
a different location in a memory store. Decision in the model is
based upon a transformation of the summed similarity between the
representation of a presented probe to the stored representations in
memory. If the summed similarity value (the probe’s global famil-
iarity) over all traces exceeds a set criterion value, then the probe is
accepted; otherwise, it is rejected.

MINERVA 2’s calculation of a probe’s global familiarity is
dependent on the representation of both probe and memory items.
MINERVA 2 uses randomly generated feature vectors to define
these representations. Specifically, each item is represented with
a vector (typically of a low dimensionality), containing values of
{0, 1, −1}, where 1 and −1 represent having a feature or not, and
0 represents lack of encoding (controlled with a free parameter
designed to mimic cognitive factors such as learning rate or
attentional variability). If the probe occurred in a study list, its
global familiarity tends to be high enough to accept (i.e., it will
exceed the set criterion), whereas if the probe did not occur in the
study list, it tends to have a lower global familiarity and can be
rejected (i.e., it will be below the set criterion). Likewise, if the probe
has small amounts of similarity to several studied items, it might also
be accepted due to a relatively high global familiarity; a feature that
allows for the model to account for phenomena such as false
recognition (Arndt & Hirshman, 1998).

However, the use of randomly generated representations ignores
a central part of the architecture of a model of memory, namely
the content of the stimuli that is being used in an experiment.
The use of randomly generated representations is not just isolated
to MINERVA 2, but indeed has been a standard assumption in
computational models of memory and language (e.g., Cree et al.,
1999; Dennis & Humphreys, 2001; Murdock, 1982; Shiffrin &
Steyvers, 1997, to name a few). This is not a failure of these models
but is a reflection of the difficulty in accounting for representational
complexity due to technological limitations, specifically in building
realistic representation types that map onto item-level properties
(e.g., the meaning of words).

In order to get a handle on the impact that the user of randomly
generated representations has on model assumptions and perfor-
mance, Johns and Jones (2010) compared the similarity structures
that different random representation types constructed and com-
pared them to the similarity structures that different vector-based
lexical semantic models (mostly distributional models; see below
for more details on this model type) produced. This was done due to
the fact that researchers typically use words in episodic memory
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experiments, and models of recognition memory are typically
dependent on computations of similarity (typically focused on
word meanings) between a probe word and a list of studied words.
It was found that the similarity distributions produced by the
semantic measures were systematically different than the represen-
tations derived by the random representations, suggesting that the
assumptions that the models were making about the nature of
representation were incorrect.
Furthermore, Johns and Jones (2010) demonstrated that when the

MINERVA 2 model was used to examine false memory effects
(similar to efforts of Arndt & Hirshman, 1998), the model was
unable to account for the correct pattern of data when given a
representation that contained semantic information about words but
could account for the data when fit with randomized representations.
This suggests that the use of random representations also allowed for
increased flexibility in accounting for data and does not just signal
an incorrect assumption about the nature of cognition. That is, by
being able to manipulate both the process that produces a behaviour
and the information structures contained in memory representations,
a modeller has a greater level of flexibility in model development
than relying upon a fixed representation type.
An early example of the power of constructing realistic repre-

sentations of stimuli is given by Nosofsky (1986) when modelling
the interaction between attention and identification in categoriza-
tion. In the study, two participants conducted a perceptual identifi-
cation task where they were presented with circles of four sizes and
lines with four different orientations, and the participants had to
identify each unique object with a 4 × 4 button grid. Those
identification data were used to generate a confusion matrix that
recorded the number of times that each button was pressed when
a participant was presented with each stimulus. This matrix was
then reduced with multidimensional scaling to construct a two-
dimensional representation of each stimulus. It was found that using
this derived representation as the underlying basis of a model of
categorization allowed for the model to achieve excellent fits to
behavioural data, even though the representations were not derived
from a categorization task. This result demonstrates the importance
of accounting for both processing and representational components
of a cognitive model and the power that comes with it.
However, the stimuli that Nosofsky (1986) used were artificially

designed to be objectively defined along articulate and known
stimulus dimensions (although see Nosofsky et al., 2020;
Sanders & Nosofsky, 2020, for similar work using model-based
visual representations of natural images). How to integrate repre-
sentations of more complex stimulus types, such as words, into
cognitive models offers a considerable challenge to cognitive
modellers. The meaning of words is acquired through millions of
episodic experiences with language, and the dimensions of meaning
are both difficult to identify and latent in people’s semantic inter-
pretation (Brysbaert et al., 2016; Hollis & Westbury, 2016). Until
recently, building cognitive representations for words at scale was
impossible due to a variety of limitations, both in computational
power available to researchers as well as the limited availability of
scaled training materials. However, developments in cognitive
theory based around scaled cognition (such as the classic LSA
model of Landauer & Dumais, 1997, and the models inspired by it)
and the continual evolution of computational hardware and the
construction of varied and large linguistic corpora have made
generating realistic representation types ever more possible.

The Simplification Assumption in Cognitive Modelling

The rationale for using randomly generated representations in
cognitive modelling is best described by the simplification assump-
tion (McClelland, 2009; Shiffrin, 2010; see Johns et al., 2017, for a
more in-depth discussion of these issues). The goal of this assump-
tion is to allow for a modelling exercise to focus on the important
aspects of a model’s performance while assuming that other com-
ponents of the model can be held constant with minimal theoretical
or computational commitments. As justification for this assumption,
McClelland (2009, p. 18) states, “The more detail we incorporate,
the harder the model is to understand.”

A good example of the use and power of the simplification
assumption is given by the semantic cognition model of Rogers and
McClelland (2004). This model utilizes a connectionist architecture
based on the previous work of Rumelhart (1990) and Rumelhart and
Todd (1993), with the goal of themodel being to examine the dynamics
of the acquisition of meaning from a developmental point of view. The
model is experientially dependent and requires training materials.
To train the model, the model was given propositions derived from
semantic networks based on the early work of Collins and Quillian
(1969). This network contained propositions about the nature of plants
and animals (e.g., canary is a animal or daisy is yellow). In the network
from Collins and Quillian (1969), the network contained a total of
84 propositions to describe all of the relations. Additionally, they used
a larger network that contained 220 propositions.

In the account of Rogers and McClelland (2004), the representa-
tional complexity of the model is kept constant. That is, the training
materials that the model is presented with are structured such that the
learning dynamics can be well understood while ignoring the actual
complexity that is contained in the natural language environment.
As an example of the differences in complexity of the propositions
in the training materials of Rogers and McClelland (2004), consider
Table 1. This table contains the propositions derived from the
semantic network of Collins and Quillian (1969) for the words
canary and pine, as well as sentences for these words attained from
young adult fiction novels used previously by Johns and Jamieson
(2018, 2019) and Johns, Dye, et al. (2020). This table shows that the
two language sources differ significantly in the complexity of the
information that is contained about the meaning of these words,
with the propositions being much more straightforward in terms of
elucidating the meaning of the two words, and also the type of
language used, with the sentences from the natural language corpora
being muchmore figurative in meaning. That is, sentences contained
in Table 1 are qualitatively different from each other and models
seeking to learn the meaning of words would face a much harder
time deriving the meaning of canary and pine when trained on a
noisy and natural corpus compared to the articulate and contrived
propositions from Collins and Quillian’s (1969) semantic network.

The model of Rogers and McClelland (2004) is one designed to
explore the development of lexical semantics, and the evaluation of
the model is not focused on whether it can learn the structure of
the training materials (many different mechanisms could learn the
underlying structure of such simple materials)—instead, the empha-
sis is placed on understanding developmental trajectories in seman-
tic memory. Given that human children are being exposed to much
more complex information from their environment compared to the
network from Collins and Quillian (1969), these materials do not
accurately reflect the learning task that a human child faces.
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In order to gain an understanding of the task difficulty that
distributional models face in extracting meaning from the natural
language environment, Johns et al. (2017) used a recently developed
optimization procedure for distributional models (entitled experien-
tial optimization [EO]; Johns, Jones, et al., 2019; see below for more
detail) to determine how much experience, in terms of number of
sentences, the bound encoding of the aggregate language environ-
ment (BEAGLE) model of semantics (Jones & Mewhort, 2007)
required to learn the structure of the semantic network of Collins and
Quillian (1969). It was found that BEAGLE required 150,000
curated natural language sentences to reach the performance of
the same model trained on 100 propositions from the Collins and
Quillian (1969) network. This demonstrates that even when training
materials from the natural language environment are optimized,
there is significant noise in corpus-based sources that requires a great
deal of experience for a model to extract stable, let alone empirically
matched, word meanings. For researchers interested in examining
learning trajectories in language development, the greater complex-
ity of the natural language environment presents a significantly
greater challenge for distributional models (however, see Asr et al.,
2016; Braginsky et al., 2019; Huebner & Willits, 2018, for some
examples of this type of research).
Given the inherent complexity of the natural language environment,

the simplification assumption has been used across both empirical and
theoretical research in psycholinguistics and episodic memory
research to isolate important theoretical questions and has proven
to be of great importance in cognitive science. Empirically, tasks such
as artificial grammar learning (Reber, 1976) or artificial language
learning (e.g., Gómez & Gerken, 2000) have been used to examine
language acquisition using limited timeframes in order to gain insight
into the learning mechanisms that are at play in statistical language
acquisition across the lifespan. Furthermore, the use of simplified
training has been popular to train and evaluate models of language

since the pioneering work of Elman (1990), where simplified training
materials were used in the development of recurrent neural networks.
Similar strategies have been used across a number of different areas
of language processing, for example, in the modelling of syntactic
priming (Chang et al., 2006) and event knowledge (Elman & McRae,
2019). Indeed, artificial languages have been used to evaluate differ-
ences in the mechanisms that different distributional models use (Asr
& Jones, 2017; Jamieson et al., 2018).

Research done utilizing the simplification assumption has
proven to be fundamental in the development of cognitive theory.
However, there are multiple reasons for this success. One reason is
due to the description of the simplification assumption as put forth
by McClelland (2009)—that by isolating processing mechanisms
from representational complexities, a better understanding of
the capabilities of the processing mechanisms can be attained,
as displayed by Elman (1990), Rogers and McClelland (2004),
and the various episodic memory models described previously.
By assuming away representational complexity, it is easier to gain
an understanding of the successes and failures of proposed pro-
cessing mechanisms. As Mewhort (1990) pointed out, however,
the benefits of simplification can represent themselves as costs
when the task of scaling theories up to real-world complexity
comes to roost.

Another reason for the simplification assumption being embraced
by various researchers is due to the limitations in the training
materials that have been available to researchers up until recent
times. The availability of large-scale training materials that can be
used to train cognitive models has only recently been developed. For
example, the Touchstone Applied Sciences Associates corpus of
Landauer and Dumais (1997) was one of the first major corpora
available of sufficient quality to develop computational models
with. Researchers now have a wide variety of different language
materials to train models (see Johns, Jones, et al., 2019, for a

Table 1
Examples of Propositions Derived From the Semantic Network of Collins and Quillian (1969) for
the Words Canary and Pine and Sentences From Young Adult Novels for These Same Words

Word Proposition Sentence

Canary Canary is a bird You both look like the cat that swallowed the canary.
Canary is a animal She had said goodbye to her canary.
Canary is a living_thing Our canary has stopped singing.
Canary can grow He is not imprisoned like a canary.
Canary is living There was actually a canary inside the birdcage.
Canary can move He is my pet canary.
Canary has skin I’m not a canary.
Canary has feathers Jack’s just the canary in the coal mine.
Canary can fly His canary had fallen into a terrified cheeping.
Canary has wings Much better than a canary that won’t sing.
Canary is yellow I’m a freaking giant canary but thanks anyway.
Canary can sing I got a canary down there.

Pine Pine is a tree They went to sit down under the pine trees.
Pine is green I got a cargo of yellow pine from Labrador.
Pine is a plant Going to see a shipment of pine that just came in.
Pine is a living_thing There were also a lot of pine and aspen trees.
Pine can grow The sound echoed through the pine trees.
Pine is living Your shout could fell a pine tree.
Pine has roots The warrior was as tall as a pine tree.
Pine has bark More like red bull and pine-scented deodorant.
Pine is big The entire room smelled like sweet pine needles.
Pine has branches She led them toward the big pine tree.

SCALABLE COGNITIVE MODELLING 5



framework utilizing a wide range of different types of language
materials) due to the digitization of diverse collections of text.
However, the cognitive system that models of language and

memory are aiming to solve are those that require lifelong experi-
ence to explain, as the impact of accumulated language experience
has differential impacts on language and memory across the lifespan
(Dubossarsky et al., 2017; Qiu & Johns, 2020; Ramscar et al., 2014;
Taler et al., 2020; Wulff et al., 2019; see Ramscar, 2022, for a
review). That is, the complexities contained in the natural language
environment are significantly greater than are assumed by the
simplified training materials. For computational cognitive science
to continue to evolve and innovate as a field, it will be increasingly
necessary to use more complex training materials to reduce the
number of assumptions that underlie a model, especially in terms of
representational assumptions.

Scaled Approaches to Cognitive Modelling

As stated previously, the study of lexical organization was one of
the first areas of cognitive science to embrace large-scale analyses of
the language environment in order to understand the connection
between the language environment that people are embedded in and
corresponding lexical behaviour. Kucera and Francis (1967) pub-
lished the first widely available word frequency norms, attained
from a sample of 1 million words across different types of texts. The
use of these norms has been widespread across the cognitive
sciences over the last 50 years, with Kucera and Francis (1967)
being cited over 8,000 times since publication, demonstrating the
importance of word frequency to the field of psychology—a corol-
lary of the pervasive and apparent impacts of word frequency on
lexical behaviour (see Brysbaert et al., 2018, for a review) and
memory performance (e.g., Glanzer & Adams, 1985, 1990).
Word frequency is an important measure used across the cogni-

tive sciences, from being a central component of theoretical ac-
counts of word recognition and lexical organization (e.g., Coltheart
et al., 2001; Goldinger, 1998; Murray & Forster, 2004; Norris,
2006) to methodological considerations in stimulus selection (e.g.,
Brysbaert & New, 2009). The use of word frequency in cognitive
models acknowledges the role that accumulated experience with the
language environment has on the language and memory processing
system. In terms of lexical organization, the use of frequency as an
organizational principle acknowledges that words that occur more
often in the language environment should be stored more strongly,
or should be more easily accessible, in memory. By endowing
models with word frequency values, it allows for lexical storage
models to simulate the impact of accumulated language experience.
However, scaled approaches to lexical organization have recently

been questioning the primacy of word frequency in accounting for the
organization of the mental lexicon, with these theories arising from
corpus-based analyses. The first major measure to challenge word
frequency was entitled contextual diversity and was first proposed by
Adelman et al. (2006; although seeMcDonald & Shillcock, 2001, for
a similar, earlier proposal). That proposal suggests that the strength of
a word should be updated not on each occurrence of a word, but each
new context that a word occurs in. To operationalize a context, natural
linguistic markers were used (e.g., document, article, chapter, book).
It has been found that a context count systematically outperforms
word frequency across multiple large data sets of lexical behaviour
(Adelman & Brown, 2008; Adelman et al., 2006; Brysbaert & New,

2009; Johns, 2021a, 2022b; Johns, Dye, et al., 2020; Johns et al., in
press; Johns & Jones, 2022; Jones et al., 2012; Senaldi et al., 2022;
see Jones et al., 2017 and Caldwell-Harris, 2021, for a review).

The success of contextual diversity measures of lexical organiza-
tion signals the power of scaled approaches to cognitive modelling,
as the availability of large text sources allowed for the development
of a new theoretical measure that can be extended and tested
empirically (see Johns et al., 2016, for an empirical examination
of contextual and semantic diversity). Theoretically, the justification
for the importance of contextual diversity is provided by the rational
analysis of memory framework (Anderson & Milson, 1989;
Anderson & Schooler, 1991), which suggests that information in
memory should be organized such that information that is more
likely to be needed in the future is more available in memory. In
terms of contextual diversity, this suggests that the best way to
determine the likelihood of a word occurring in a future context is
those that occurred in the greatest number of previous contexts and
thus should be the words that are most available in the mental lexicon
(see Jones et al., 2017, for an in-depth discussion of the relation
between rational analysis and contextual diversity). Corpus-based
modelling allows for a determination of the types of contexts that
words occur, and thus is capable of constructing better estimates of a
word’s likely need. This research area demonstrates that by combin-
ing newly available resources (large-scale text corpora) with classic
theories from cognitive psychology (the rational analysis of mem-
ory), new and better theories of cognition can be constructed.

Currently, the best contextual diversity measures are those
derived from those utilizing the semantic distinctiveness model
(SDM), first introduced by Jones et al. (2012), and has received
multiple implementations since (Johns, 2021a; Johns et al., 2016;
Johns, Jamieson, & Jones, 2020). The SDM modifies a contextual
diversity measure by weighting each occurrence of a word in
a context depending on how unique a contextual occurrence for
a word is, with more unique contextual occurrences leading to a
stronger encoding strength for that word. Uniqueness is defined
based on the semantic similarity of the representation of a word and
the context that it occurred in. The implementation with the best fit is
the model of Johns (2021a; see Johns & Jones, 2022, for a further
examination of this model), which used a communicative definition
(a single individual’s history of commenting on an internet discus-
sion forum) of a linguistic context. This model was found to provide
an 8.5%–22.5% increase in variance accounted for over word
frequency across a variety of mega-large sets of lexical organization
data (Johns, 2022b; Johns & Jones, 2022), while minimizing or
eliminating the contribution of word frequency, demonstrating that
this model is substantially more powerful in accounting for this type
of data than word frequency. Indeed, the explanatory power of the
SDM model of Johns (2021a) has been shown to generalize across
behavioural data types, including lexical semantics (Johns, 2021b),
recognition memory (Johns, 2022b), idiomatic processing (Senaldi
et al., 2022), semantic decision (Antal et al., 2022), and cognitive
aging (Johns et al., in press).

The ability of the SDM to construct a modified contextual
diversity measure comes from the mechanisms of distributional
models of semantics (see Günther et al., 2019; Kumar, 2021, for
recent reviews). The standard information source that distributional
models capitalize upon is that words that co-occur together within
linguistic contexts tend to be semantically related, and that principle
extends to first, second, and higher order contextual co-occurrence.
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By learning word co-occurrence relationships across a very large
corpus of text, distributional models construct accurate representa-
tions of the meaning of words and do so mechanistically via
association instead of a rational symbolic process.
Distributional models are the greatest success story of scaled

approaches to cognitive modelling, with the LSA model of
Landauer and Dumais (1997) being the classic model. Additionally,
LSA is an example of how technological innovations from computer
science can inform the development of cognitive theory, as the
underlying mechanisms that drive the model were developed to
accomplish information retrieval from databases and were entitled
latent semantic indexing (Deerwester et al., 1990). LSA constructs
semantic representations for words by constructing a Word ×
Document matrix from a text corpus and decomposing it to construct
a smaller semantic feature space through a technique entitled
singular value decomposition. By taking the similarity between
the inferred features of words, Landauer and Dumais (1997) dem-
onstrated that LSA could account for a variety of different lexical
semantic behaviours.
Since Landauer and Dumais (1997) was published, a variety of

different distributional models of semantic cognition have been
proposed, such as probabilistic inference methods (Griffiths et al.,
2007), vector-accumulation/noise-cancellation methods (e.g., Jones
& Mewhort, 2007), predictive neural networks (Mikolov et al.,
2013), count-based methods (e.g., Bullinaria & Levy, 2007, 2012;
Johns, Mewhort, et al., 2019; Lund & Burgess, 1996), and retrieval-
based mechanisms (Jamieson et al., 2018; Johns & Jones, 2015;
Kwantes, 2005). The success of this model type demonstrates the
systematic connection between contextual word usage and the
word meanings that people have acquired. That is, in contrast to
the constrained training materials used in the approach of models
employing the simplification assumption, distributional models
learn the meaning of words from large-scale, noisy, and naturalistic
information.

Cognitively Inspired Distributional Models

While the development of LSA came from research being done on
information retrieval (similarly, the neural embedding model
word2vec was developed by Google to accomplish mainly applied
tasks before being adopted by cognitive science researchers;
Mikolov et al., 2013), other distributional models have been devel-
oped from previously proposed cognitive models. A notable exam-
ple of this is the BEAGLE model of Jones and Mewhort (2007).
BEAGLE is a vector accumulation model, where a semantic repre-
sentation is formed continuously based on how a word was used in a
sentence. The learning mechanisms that the model utilized were
based on the theory of distributed associative memory (TODAM)
model of Murdock (1982), which is a computational model of
episodic memory with an emphasis on understanding the storage
of associative information.
In TODAM, two types of information are used to construct an

episodic memory trace: item and associative information. Item
information signals the occurrence of an item on a memory list,
whereas associative information signals the occurrence of two
words occurring together in a pair. To encode associative informa-
tion, a technique known as convolution is used (with different
implementations using different techniques for convolution). The
current standard technique is entitled circular convolution, which is

a function that takes in two vectors and constructs a new, unique
vector that represents the association between the two. For example,
if the model were simulating a paired-associate learning task (a task
where participants have to remember pairs of words), and one pair
was “dog–cat,” in TODAM the vectors for dog and cat would be
added into an episodic memory trace (to signal that those words
occurred in the last), as well as the convolution of dog and cat
(represented by dog⊛ cat in Jones & Mewhort, 2007) to signal that
those words are a pair. In this manner, an episodic trace is con-
structed such that both item and associative information are
contained.

The BEAGLE model uses the same mechanisms proposed by
TODAM to learn multiple aspects of word meanings, namely item
(or context) and order information. However, instead of forming
episodic traces of this information, a word’s representation in the
lexicon is constructed from processing sentences across a corpus
(i.e., the episodic experiences that a word was used in).

Unlike other distributional models, such as LSA, BEAGLE
operates at the sentence level of linguistic context. There are two
types of vectors that are used by the model: environmental and
memory vectors. Environmental vectors are static, meaning that
they do not change across learning, and are used to mark a word’s
occurrence in a sentence. Each word in the model’s lexicon has a
separate environmental vector, and they are formed by randomly
sampling from a Gaussian distribution. Memory vectors are
dynamic, as they change across learning, and following the propo-
sals of TODAM, there are both item and order memory vectors.

To build the memory vectors across learning, the model “reads” a
sentence one word at a time and updates its memory representation
in response to the word’s occurrence. Item information is updated
by summing the environmental vectors of the other words in the
sentence (a window size parameter can be used to determine how
many words are included in an update) into the word’s item
representation. A word’s order representation is updated by adding
all of the n-grams that surround a word in a sentence (up to a set size)
using noncommutative circular convolution (Plate, 1995), and these
n-gram vectors are added into the word’s order representation. This is
done for each word in a sentence and each sentence in a corpus. Thus,
the word’s item representation encodes pure co-occurrence, whereas
the order representation encodes simplified syntactic information
about how a word is used in relation to other words. It is common
to sum these represents into a single composite representation. The
ability to naturally acquire both co-occurrence and simple syntactic
information is a unique capability of BEAGLE among distributional
models. There is an alternative implementation of the model that
utilizes sparse representations (Recchia et al., 2015; see Kanerva,
2009, for a discussion of the biological plausibility of this approach),
which reduces the computational requirements of the model.

BEAGLE has proven to be able to successfully account for a
variety of different empirical findings, including memory search
(Hills et al., 2012), verbal fluency performance (Taler et al., 2020;
Taler & Johns, 2022), semantic priming (Hare et al., 2009; Jones
et al., 2006), changes in memory performance in clinical populations
(Johns et al., 2018), individual and demographic differences in
language processing (Aujla, 2021; Johns & Jamieson, 2018, 2019),
and episodic memory effects (Mewhort et al., 2018; Osth et al.,
2020), among others. When BEAGLE is combined with training
methodologies from advanced machine learning algorithms, the
performance of the model is similar to the top models in natural
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language processing (Johns, Mewhort, et al., 2019). Additionally,
the simplicity of the model makes it possible to be optimized with
advanced methodology targeting the training materials that are
provided to the model, further increasing the performance of the
model in comparison to other models (Johns, Jones, et al., 2019).
The success of BEAGLE demonstrates that the development of

large-scale cognitive models does not have to come from research
done in computer science, such as was done with LSA and word2-
vec. Instead, standard cognitive mechanisms can be used to scale a
model up to process similar amounts of information that an adult
human being may have experienced. This suggests that classic
mechanisms that have been developed over decades of theoretical
research in the cognitive sciences are useful not only in the contin-
ued development of advanced cognitive theory but can also aid in
the development of new technologies in machine learning and
artificial intelligence.
Related to BEAGLE scaling up TODAM, the retrieval operations

underlying MINERVA 2 have been used to develop a different
conceptualization of semantic memory (Jones, 2019), through a com-
bination of the processing mechanisms employed byMINERVA 2 and
the representation assumptions of BEAGLE. In instance-based
distributional models (e.g., Jamieson et al., 2018; Kwantes, 2005;
see also Ambridge, 2020, for a general discussion of these
issues). In this model type, there is no centralized representation
of a word’s meaning stored in memory, such as what is done in the
majority of other distributional model types. Instead, each piece
of language that a model encounters (whether it be at the sentence
or document level) is stored as a single instance in memory. To
retrieve the meaning of a word, the word is treated as a memory
probe, and all of the traces that a word occurred in can be
retrieved through a similarity function. The major advantage
of this model type is that multiple words can be used as cues,
enabling for combined meanings to be retrieved, and allowing for
parsimonious explanations of complex linguistic phenomena
such as polysemy.
Recent models by Johns and Jones (2015) and Johns, Jamieson,

et al. (2020) have combined the representational framework of
BEAGLE with the cued retrieval operations of MINERVA 2 in
order to account for both sentence comprehension and production
(see also Jamieson & Hauri, 2012; Jamieson & Mewhort, 2011, for
an initial combination of these models in order to examine artificial
grammar learning). In these models, the storage mechanisms from
BEAGLE are used to construct realistic representations of sentence
structures, and the retrieval operations from MINERVA 2 are used
to construct expected syntactic structure that surrounds the usage of
words, but with no grammatical information actually being inte-
grated into the model’s representation. Through this combination of
processing and representation mechanisms, a wide variety of effects
could be accounted for across both language comprehension and
production. The combination of processing and representational
models employed by these models signals a promising pathway
towards more powerful models of cognition.
One specific challenge that has faced distributional models is the

lack of sensory and motor information in their representations, a key
limitation given the importance of this information type in theories
of language and cognition (Barsalou, 1999, 2008). This is com-
monly referred to as the grounding problem. In recognition of this
issue in distribution modelling (e.g., Riordan & Jones, 2011; see
Wingfield & Connell, 2022, for a recent review), there has been a

sustained effort to develop distributional models that integrate
multisensory information into the word meaning representations
constructed with distributional models (e.g., Andrews et al., 2009;
Banks et al., 2021; Bruni et al., 2014; DeDeyne et al., 2021; Johns &
Jones, 2012; Lazaridou et al., 2017). Although the models all differ
in their proposals as to the mechanisms by which distributional
representations are grounded, all approaches integrate multimodel
perceptual information into word meaning representations, typically
through the utilization of various feature norms (e.g., Lynott et al.,
2020; McRae et al., 2005). Given the substantial task faced by
researchers attempting to ground distributional models, this will
remain an important area of research for computational modelers
and the cognitive realism of this model type. Relatedly, Johns
(2021a, 2021b, 2022b) and Johns and Jones (2022) have demon-
strated how social and communicative information can be integrated
into models of lexical organization and lexical semantics, in order to
ground these models in the social world, another important theoret-
ical growth point for this type of model.

Integrating Representation and Processing

One of the major promises of distributional models is that they
provide a representation upon which processing mechanisms can
operate. As discussed, the vast majority of previous cognitive model
efforts, with some notable exceptions (e.g., Nosofsky, 1986) have
focused on processing assumptions. The outcome of training a
distributional model is a vector-based semantic representation for
each word in the lexicon. The most obvious use of these representa-
tions is to use them to directly test how the similarity structures of
the learned representations map onto behavioural tasks examining
lexical semantic properties of words (e.g., word similarity tasks).
However, they can also be used to underlie a processing model,
enabling realistic semantic representations to be integrated into a
model’s operations.

The most natural area of research where this integration is useful
in the study of episodic memory. As discussed, computational
modelling has a rich history in theory development in episodic
memory. However, much of the focus has been placed on processing
mechanisms rather than representational aspects of memory (mostly
due to limitations in place on developing realistic representations of
word meanings). By integrating a realistic representation of word
meanings into a processing model, the similarity structure contained
in semantics can be integrated into themodel and be used to examine
item-level effects in episodic memory. The most obvious applica-
tion of this model is to empirical tasks that have a large influence on
semantics.

A good example of this type of task is in the Deese/Roediger–
McDermott (DRM) false memory paradigm (Deese, 1959; Roediger
& McDermott, 1995), where participants are presented with lists of
words that are all related to a single critical word (e.g., hospital,
nurse, medicine, for the critical word doctor). The critical word is
not presented to participants, but on tests of their memory, parti-
cipants endorse critical words as being remembered at equal rates to
studied words on both recognition and recall rates. Johns et al.
(2012) constructed a model of both true and false recognition with a
representation derived from a distributional model and a process
model inspired by neural synchronization (Singer, 1999) and the
mechanisms proposed by fuzzy trace theory (Brainerd & Reyna,
2002). This model, entitled the recognition through semantic
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synchronization model, can account for a variety of false memory
effects, including item-level variability in the amount of false
recognition that different DRM lists elicit (Gallo & Roediger,
2002; Roediger & McDermott, 1995), effects of associative and
thematic strength (Cann et al., 2011), and developmental reversals in
false recognition (Brainerd et al., 2002), among others. Addition-
ally, Johns et al. (2021) recently expanded the model to also account
for recollection-based data (see also Reid & Jamieson, 2022, for an
application of the method to false recognition of unstudied but
related lures).
A related area where integrated process and representation mod-

els have enabled theoretical development is verbal fluency and
memory search. In a verbal fluency task, participants are asked
to produce as many words as possible within a specific category in
1 min and is a commonly used tasked in neuropsychology examin-
ing language and memory impairments (Taler & Phillips, 2008). In
examinations of semantic memory performance category fluency is
used where participants are asked to produce as many words as
possible from a given semantic category. Typically, performance in
this task is measured by counting the number of category exemplars
a participant produced, or with hand-coded measures of searching
patterns within and across clusters within semantic space (Troyer
et al., 1997).
The first model to explain category fluency using word repre-

sentations derived from a distributional model was the animal
foraging model of Hills et al. (2012; see also Hills et al., 2015),
which used word representations derived from BEAGLE. The
results of Hills et al. (2012) demonstrated that the memory search
mechanisms that humans use to search through semantic memory
seem to be similar to optimal foraging algorithms that animals use to
find food in their physical environments (see Avery & Jones, 2018,
for a follow up to this research, and Lundin et al., 2022, for an
examination into the neurological underpinnings of optimal forag-
ing in memory search). Similar research has been used to examine
language switching in bilinguals (Taler et al., 2013), changes that
occur during the development of a memory disorder (Johns et al.,
2018), bilingual verbal fluency (Taler & Johns, 2022), and the
dynamics of language production across the aging spectrum (Taler
et al., 2020).
An additional area of research where representations derived from

distributional models have been successfully employed is in judge-
ment and decision-making (see Bhatia et al., 2019 for a recent
review). For example, Bhatia (2017) demonstrated that the similar-
ity structure of words that distributional models construct accurate
predictions about the judgements that people make across a variety
of tasks. These results have been generalized to other types of
judgement tasks, such as numerical estimation (Zou & Bhatia,
2021), preferential choice tasks (Bhatia, 2019), and choice tenden-
cies in a naturalistic data set (Bhatia & Walasek, 2019).
Combined, this work demonstrates the power and promise of

using experientially scaled representations to drive cognitive mod-
els. Distributional models allow for representations to be con-
structed from realistic levels of experience. By using these
representations in cognitive models, it allows for additional variance
to be accounted for across behavioural data sets by allowing for
item-level variance to be accounted for. Additionally, it accounts for
lifespan effects by manipulating the amount and type of experience
that a model can integrate into its representation (see Johns et al.,
2012, 2019; Qiu & Johns, 2020; Taler et al., 2013, for examples).

This discussion of cognitively inspired distributional models and
integrated process-representational models demonstrates the power
of scaled approaches to computational cognitive modelling. How-
ever, the development of these models has not been completely
independent of standard methodologies employing the simplifica-
tion assumption. For example, the SDMmodel of Jones et al. (2012)
was developed and validated in response to an artificial language
experiment (and later with a mixed artificial/natural language exper-
iment; Johns et al., 2016). Jamieson et al. (2018) and Crump et al.
(2020) evaluated the unique capabilities of a retrieval-based distri-
butional modelling using simple artificial languages. Asr and Jones
(2017) used artificial languages to contrast and compare different
distributional modelling approaches. Similarly, Mannering and
Jones (2021) used artificial languages to demonstrate issues of
catastrophic interference in neural embedding distributional models.
Artificial languages were used in these examples due to the simplifi-
cation assumption provide fine-grained capabilities to isolate how a
model is operating (McClelland, 2009; Shiffrin, 2010) while limiting
representational complexity. This can be difficult to accomplish
when using large natural corpora, as it is difficult to determine
why a model is behaving as it is when learning from large and noisy
data. Thus, scaled and simplified approaches to cognitive modelling
are not opposite approaches, as both offer their advantages and
disadvantages, and researchers should be aware of the strengths and
limitations of both approaches.

Methodological Issues

Using distributional models as an underlying representation in a
cognitive model presents unique challenges and opportunities in
contrast to classical processing-focused approaches. One of the
major challenges facing the development of new scaled models
is the training materials that are used, as these models are experien-
tially dependent. Distributional models face a classic problem in
computational systems, best summarized with the expression “gar-
bage in, garbage out.” The quality of the representations that
distributional models can construct is directly dependent on the
informational content of the text corpora that a model is given.

For applied research developing intelligent systems, the answer to
this problem is relatively simple—use the one that seems to provide
the best solution within a given problem domain. Typically, this
manifests in using the greatest amount of training materials possible,
such as what is done with transformer networks like General Pre-
Trained Transformer (GPT-3; Brown et al., 2020), which is trained
on a very large subsection of the entire internet. However, psychol-
ogists looking to develop cognitive theory from distributional
models face a more complex task in deriving correct training
materials. Specifically, the promise of distributional modelling in
the cognitive sciences is that they allow for lifespan-level experi-
ences with language to be built into a cognitive model. The types of
experiences that individuals have with language are varied and
diverse, which are not necessarily taken into account by the typical
training materials that distributional models employ (e.g., collec-
tions of fiction books orWikipedia articles are likely not reflective of
the actual linguistic experience of individuals).

To gain an initial understanding of the impact of trainingmaterials
on distributional model performance, Johns and Jamieson (2018)
examined a large set of fiction books organized by author and genre
and found that an individual author’s use of language was very
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distinct and was much greater than the impact of genre. This result
was replicated by Johns, Dye, et al. (2020) with a much larger set of
books. This finding suggests that individuals vary greatly in their
usage of language and begs the question as to what leads to this
variability.
Johns, Jones, et al. (2019) took a more quantitative approach to

this question and devised an algorithm that optimized a distribu-
tional model’s performance by selecting pieces of language that
allowed the model to have the best fit to a set of data. The method is
entitled EO. The motivation for the development of EO was to
determine if the lexical experience that different individuals have is
embedded in their lexical behaviours. It was found that using EO
provided multiple models the ability to achieve benchmark fits to
various types of data across lexical semantics, lexical organization,
sentence processing, and episodic recognition. Importantly, it was
found that EO could infer demographic information about the
participants from whom the data were collected. Specifically,
when fitting to lexical decision data collected from younger and
older adults, it was found that the method preferred young adult
novels when fitting to younger adult data and advanced fiction
novels when fitting to older adult data. This was further validated
by Johns and Jamieson (2019) who found the method preferred
time and place appropriate language sources when fitting to data
collected from different times and places.
From a high-level perspective, these results indicate that since

distributional models are experientially dependent, they should be
trained with materials that are consistent with the types of linguistic
experiences of the participants whose data are being investigated.
Additionally, this suggests that when using or comparing distribu-
tional model performance, close attention should be paid to the types
of training materials used to optimize a model, as a model may be
incorrectly rejected if it was not provided with appropriate samples
of text. An important goal of distributional models should be the
continued collection of different sources of text that correspond to
people’s experience with the language environment.
A related issue to the type of language that is contained in a

training corpus is that of corpus length. Although it is common
practice to train a distributional model with a maximal amount of
linguistic materials (e.g., all of Wikipedia), this is not reflective of
the amount of linguistic experience that an average person has
received. Although it is difficult to estimate the amount of language
one experiences across their lifespan, studies (Brysbaert et al., 2016;
Mehl et al., 2007) estimate that an average student experiences about
12 million word tokens a year. For an average 60-year-old, this
works out to about 700 million word tokens experienced across their
lifespan. Thus, while humans receive a very substantial amount of
linguistic, it likely does not reach to the billions of words that are
commonly used in distributional model training. In Johns, Mewhort,
et al. (2019), when using EO to optimize a model, the method only
selected a limited number of language sections (although the
number selected is dependent on the number of words used in a
behavioural data set), suggesting that language quality is more
important than amount of language in improving distributional
model performance. However, when training distributional models
to explain human cognition, attention should be paid to corpus size,
since if the model requires more training materials than is plausible
for a human to receive that model is likely not a good candidate as a
plausible model of cognition. However, corpus-based analyses are
not just used in the development of cognitive models but can also be

used to determine the overall structure of the language environment
(e.g., Johns, 2021a). In these cases, maximizing the amount of
materials may provide more insight into the overall shape of the
language that people could experience.

An additional issue that needs to be considered in scaled
cognitive modelling is model complexity. The complexity of a
cognitive model is typically quantified as some transformation of
the parameter space of the model (e.g., Shiffrin et al., 2008),
stemming from classic model testing procedures such as Bayesian
information criterion (Schwarz, 1978) or Akaike information cri-
terion (Akaike, 1973), both of which penalize model fit as a
function of the number of available free parameters. As with other
areas of cognitive modelling, distributional models differ in their
parameter space. For example, neural embedding models (e.g.,
word2vec; Mikolov et al., 2013) have a much larger parameter than
most distributional models (Johns, Mewhort, et al., 2019). Other
approaches, such as pointwise mutual information (Bullinaria &
Levy, 2007, 2012) have an extremely small parameter space.
Although little attention has been given to the relative costs and
benefits of including free parameters across the different distribu-
tional models, it has been repeatedly found that by taking effort to
equate free parameters in different models with similar training
assumptions, different distributional models tend to perform within
the same range of success (Johns, Mewhort, et al., 2019; Levy
et al., 2015).

Another source of complexity that should be considered in
distributional modelling is the computational complexity of differ-
ent model types (Recchia & Jones, 2009). Computational complex-
ity comes from theoretical computer science and is based upon the
number of steps an algorithm requires, typically in the worse case,
given an input of a certain size. Different distributional model types
have different computational complexity levels—for example, LSA
is considerably more computationally complex than pointwise
mutual information or BEAGLE. This has been proposed to be a
general consideration in cognitive science (Beal & Roberts, 2009)
and one that is often ignored. Just as complexity of the model
parameter space has been considered an insight into the underlying
flexibility that a model has in fitting to data, computational com-
plexity may have an equivalent role to play in increasing model
power. However, this is an understudied problem that should be a
question for future research (see Jones & Dzhafarov, 2014, for an
example of similar issues within a different domain).

The issue of computational complexity is related to a general
issue in scaled approaches to cognitive modelling—that of being
able to derive sound theoretical understanding and cognitive prin-
ciples from a model. This is an issue discussed by McClelland
(2009), who provided a parable of mapmakers. This parable,
initially proposed by Borges (1998), describes how if one is
obsessed with making the most realistic maps, the end result is a
map that rivals the size of the real world, a not overly useful
endeavor. Thus, a practical map is one that is abstracted from the
geographic world enough to provide a reasonable guide for naviga-
tion. Similar issues arise in scaled cognitive modelling when it
becomes difficult to determine the underlying reasons for a model’s
success due to issues of underlying complexity of the models.

A good example of this issue is provided in the neural embedding
model word2vec (Mikolov et al., 2013). The original article describ-
ing this model is sparse on detail and evaluation, which prompted
the need for other researchers to examine and understand the nature
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of the model’s operations (e.g., Levy & Goldberg, 2014). One
specific example of understanding word2vec’s operations is the use
of negative sampling, where the network is updated to be unpre-
dictive of unrelated words, accomplished through the generation of
words based on precomputed word frequency values. Goldberg and
Levy (2014) sought to understand the impact of this procedure
through mathematical analysis, with their ultimate conclusion read-
ing, “Why does this produce good word representations? Good
question. We don’t really know.” (p. 5). The impact of negative
sampling was not determined until Johns, Mewhort, et al. (2019)
used a simpler distributional framework to understand the impact of
negative sampling, where it was determined the success of the
procedure was due to negative sampling integrating baseline levels
of co-occurrence into a word’s representation, allowing for unique
co-occurrence values to be highlighted. This finding differed from
the common assumption that negative sampling was being used to
hone a prediction method.
This issue becomes even more pertinent when discussing current

state-of-the-art deep learning models emerging in artificial intelli-
gence and machine learning research, such as the GPT network
(Floridi & Chiriatti, 2020). This model, while extremely impressive
in performance, has a parameter space in the billions and uses many
different operations to hone and optimize its performance, and is
trained on the text of almost the entire internet (i.e., an amount of
training materials that is orders of magnitude larger than a typical
human receives). Thus, understanding the reasons for the model’s
behaviour is nearly impossible compared to standard approaches in
cognitive modelling. Indeed, researchers are now collecting human
data to try to understand the connection between human cognition
and GPT and to elucidate how and why the model is successful (e.g.,
Goldstein et al., 2022). If one’s model is so complex that it requires
data collection to understand its performance, it is likely not
informative for theory generation in the cognitive sciences, as it
has simply shifted the goalposts from understanding how human’s
operate to understanding how amachine that behaves somewhat like
a human operates (see Jones et al., 2015, Johns, Jamieson, & Jones,
2020, for a related discussion of these issues).
From a psychological perspective, the scaling up of classic

cognitive models such as TODAM and MINERVA 2 eliminates
these issues, as these are well-established models of cognition that
have been used, studied, and evaluated by cognitive psychologists
for decades. Although these models are not as optimized and
powerful as the larger machine learning models, they provide
theoretical clarity into the contribution of different learning and
retrieval mechanisms in explaining human behaviour. Thus, psy-
chologists should not throw away their models, developed to explain
well-defined laboratory tasks, but instead should determine how
these models can be integrated with scalable learningmechanisms to
evaluate their performance when presented with large and noisy
amounts of training materials.

General Discussion

The goal of this article was to review common practices within
cognitive modelling and to determine the role that machine learning
and big data technologies could play in developing cognitive theory.
Specifically, this article has focused on the role that representation, and
in turn memory content, plays in explaining human cognition. In the
history of computational cognitive modelling, there have been multiple

strategies used to integrate content into the computational underpin-
nings of a model. One approach has been to generate artificial stimuli
that seek to capture some aspects of complex trainingmaterials, such as
natural language, in order to focus the modelling exercise on the
processing mechanisms that control and produce behaviour (e.g.,
Elman, 1990; Reber, 1976; Rogers & McClelland, 2004). This
approach to cognitive modelling is best exemplified by the simplifica-
tion assumption (McClelland, 2009; Shiffrin, 2010), which seeks to
explain away complexity in one domain (e.g., environmental occur-
rence patterns) to focus on certain aspects of amodel’s framework (e.g.,
learning or processing mechanisms) to gain a more complete under-
standing of a model’s success. The simplification assumption has
played a central role in the history of cognitive modelling in generating
sophisticated models of human cognition.

Scaled cognitive modelling offers an alternative to the use of the
simplification assumption, as they provide an ability to generate
realistic memory representations that contain content that is reflec-
tive of the experience that an individual may receive during their
lifetime. Similar to Simon’s (1969) parable of the ant, scalable
modelling aims to evaluate a cognitive mechanism in the context of
the rich environmental regularities that it evolved to thrive in. The
integration of realistic representation types with plausible proces-
sing mechanisms provides a promising pathway for the develop-
ment of more powerful, and increasingly plausible, models of
cognition. As detailed, scaled cognitive models have proven to
be successful at accounting for a wide variety of different beha-
vioural data types, such as morphological processing (e.g., Marelli
& Baroni, 2015; Marelli et al., 2017), lexical organization (e.g.,
Hoffman et al., 2013; Johns, 2021a, 2022b; Jones et al., 2012),
episodic memory (e.g., Johns et al., 2012, 2021; Mewhort et al.,
2018; Osth et al., 2020), verbal fluency (e.g., Hills et al., 2012; Taler
et al., 2013), sentence processing (e.g., Johns & Jones, 2015),
language production (Johns, Jamieson, et al., 2020), and decision
(e.g., Bhatia, 2017), among others.

This multitude of findings is coherent with classic goals in the
cognitive sciences (Estes, 1955; Simon, 1969), which propose that
cognitive models should include environmental structure to simplify
their operations and increase the model’s adaptability. New approaches
to generating cognitive theory using scaled cognitive models offer an
increased ability to integrate this information into a model’s perfor-
mance, something that has not been available to previous generations of
researchers due to a multitude of technological limitations. However,
given the ability of distributional models to generate realistic repre-
sentations of word-based stimuli, it provides an ability to understand
the interaction between process and representation in understanding
cognition, an issue of central importance in generating cognitive theory
(Castro & Siew, 2020; Jamieson et al., 2022).

A central goal of the psychological and cognitive sciences is to
explain human behaviour across the lifespan (Wulff et al., 2019). As
people age, lexical experience is accumulated within memory which
has a causal impact on behaviour at different ages (Ramscar et al.,
2014, 2017; see Ramscar, 2022, for a review). Most traditional
approaches to cognitive modelling ignore this issue (although see
Ramscar et al., 2014, 2017, for an alternative perspective). Distri-
butional and corpus-based models of cognition offer an ability to
include accumulated experience into a variety of models explaining
behaviour at different time points, for example, in paired-associate
learning (Qiu & Johns, 2020) and verbal fluency (Taler et al., 2020)
performance across the aging spectrum. Basing a cognitive model’s
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operations on a realistic representation type allows it to be tested on
a greater variety of data, such as developmental and aging data.
A related overarching question is when a researcher should

consider using a scaled representation to integrate with a processing
model, as there are tasks where using these representations would
not lead to significant increases in model performance. For example,
if a task focused on orthographic or phonological processing, the
integration of a distributional representation may not provide much
more power to a model than traditional techniques offer. It is
difficult to predict a priori the impact of past experience on task
performance, which has led some researchers (e.g., Nelson &
Shiffrin, 2013) to use previously unseen stimuli in their experimen-
tal designs. However, the integration of a scaled representation into a
process model’s behaviour provides an interesting pathway for
model testing procedures, as it provides a method for researchers
to definitively determine whether a task is influenced by themeaning
of words, which could provide further insights into the cognitive
mechanisms that are at play for different behavioural data types.
Historically, in cognitive modelling, more attention has been paid to

process overrepresentation. This has been mainly due to technological
limitations in generating realistic representation types. New corpus-
based models allow for the generation of realistic representations that
contain semantic content to be built into a model’s processing, which
allows for behaviour to be accounted for with an interaction between
process and representation. However, as with any new technological
improvement in the cognitive sciences, the development of represen-
tational models needs to be crouched within standard cognitive theory
in order to ensure a productive and cumulative science.

Résumé

L’objectif classique de la modélisation cognitive est l’intégration du
processus et de la représentation pour développer des théories
complètes de la cognition humaine (Estes, 1955). Cet objectif est
encore mieux exprimé par le travail précurseur de Simon (1969) qui
s’est servi de la parabole de la fourmi pour illustrer l’importance de
comprendre l’environnement dans lequel une personne est intégrée
au moment d’élaborer une théorie de la cognition. Cependant, les
hypothèses habituelles pour expliquer le rôle de la représentation
dans les modèles cognitifs computationnels ne représentent pas
exactement le contenu de la mémoire (Johns et Jones, 2010). Le
développement récent des approches de la cognition fondées sur
l’apprentissage automatique et les mégadonnées, désignées ici par le
terme de modélisation cognitive à l’échelle, offre une solution
potentielle à l’intégration du processus et de la représentation.
Cet article examine les pratiques et les hypothèses standard qui
interviennent dans la modélisation cognitive, et comment les nou-
velles approches axées sur les mégadonnées et l’apprentissage
automatique modifient ces pratiques, de même que les directions
que devraient prendre les recherches à venir. L’article a pour but
d’ancrer les approches axées sur les mégadonnées et l’apprentissage
automatique dans les sciences cognitives et dans les principes
théoriques cognitifs classiques, afin de dégager une voie construc-
tive vers l’intégration de la théorie cognitive à la méthodologie
informatique avancée.

Mots-clés : modélisation cognitive, apprentissage automatique,
mégadonnées, sémantique lexicale, modélisation distributionnelle
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